Nonlinear Dynamics

, Volume 45, Issue 3–4, pp 237–247 | Cite as

The Damped Nonlinear Quasiperiodic Mathieu Equation Near 2:2:1 Resonance

  • Nazha Abouhazim
  • Richard H. Rand
  • Mohamed Belhaq


We investigate the damped cubic nonlinear quasiperiodic Mathieu equation
$$ \frac{d^2x}{dt^2}+(\delta+\varepsilon \cos t+\varepsilon \mu \cos\omega t)x+\varepsilon \mu c\frac{dx}{dt}+\varepsilon \mu \gamma x^3=0$$
in the vicinity of the principal 2:2:1 resonance. By using a double perturbation method which assumes that both ε and μ are small, we approximate analytical conditions for the existence and bifurcation of nonlinear quasiperiodic motions in the neighborhood of the middle of the principal instability region associated with 2:2:1 resonance. The effect of damping and nonlinearity on the resonant quasiperiodic motions of the quasiperiodic Mathieu equation is also provided. We show that the existence of quasiperiodic solutions does not depend upon the nonlinearity coefficient γ, whereas the amplitude of the associated quasiperiodic motion does depend on γ.

Key words

parametric excitation quasiperiodic resonance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rand, R., Zounes, R., and Hastings, R., ‘Dynamics of a quasiperiodically forced Mathieu oscillator’, in Nonlinear Dynamics: The Richard Rand 50th Anniversary Vol., A. Guran (ed.), World Scientific, Singapore, 1997, pp. 203–221.Google Scholar
  2. 2.
    Zounes, R. and Rand, R., ‘Transition curves for the quasiperiodic Mathieu equation’, SIAM Journal on Applied Mathematics 58, 1998, 1094–1115.MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Rand, R., Guennoun, K., and Belhaq, M., ‘2:2:1 Resonance in the quasiperiodic Mathieu equation’, Nonlinear Dynamics 31, 2003, 367–374.MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Aniss, S., Souhar, M., and Belhaq, M., ‘Asymptotic study of the convective parametric instability in Hele-Shaw cell’, Physics of Fluids 12(2), 2000, 262–268.MathSciNetCrossRefGoogle Scholar
  5. 5.
    Aniss, S., Belhaq, M., Souhar, M., and Velarde, M. G., ‘Asymptotic study of Rayleigh-Bénard convection under time periodic heating in Hele-Shaw cell’, Physica Scripta 71, 2005, 1–7.Google Scholar
  6. 6.
    Zounes, R. and Rand, R., ‘Global behavior of a nonlinear quasiperiodic Mathieu equation’, Nonlinear Dynamics 27, 2003, 87–105.MathSciNetCrossRefGoogle Scholar
  7. 7.
    Chirikov, B. V., ‘A universal instability of many-dimensional oscillator systems’, Physics Reports 52, 1979, 263–379.MathSciNetCrossRefGoogle Scholar
  8. 8.
    Zounes, R. and Rand, R., ‘Subharmonic resonance in the nonlinear Mathieu equation’, International Journal of Non-linear Mechanics 37, 2002, 43–73.MathSciNetCrossRefGoogle Scholar
  9. 9.
    Belhaq, M., Guennoun, K., and Houssni, M., ‘Asymptotic solutions for a damped non-linear quasi-periodic Mathieu equation’, International Journal of Non-linear Mechanics 37, 2002, 445–460.MathSciNetCrossRefGoogle Scholar
  10. 10.
    Rand, R. H., ‘Lecture notes on nonlinear vibrations’, 2004. Published on-line by The Internet-First University Press,
  11. 11.
    Nayfeh, A., Perturbation Methods, Wiley, New York, 1973.Google Scholar
  12. 12.
    Guennoun, K., Houssni, M., and Belhaq, M., ‘Quasi-periodic solutions and stability for a weakly damped nonlinear quasiperiodic Mathieu equation’, Nonlinear Dynamics 27, 2002, 211–236.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • Nazha Abouhazim
    • 1
  • Richard H. Rand
    • 2
  • Mohamed Belhaq
    • 1
  1. 1.Faculty of Sciences Aïn ChockMaârifMorocco
  2. 2.Cornell UniversityIthacaU.S.A.

Personalised recommendations