Nonlinear Dynamics

, Volume 44, Issue 1–4, pp 243–250 | Cite as

The First Eigenvalue of the Laplacian and the Conductance of a Compact Surface



We present some results whose central theme is the phenomenon of the first eigenvalue of the Laplacian and conductance of the dynamical system. Our main tool is a method for studying how the hyperbolic metric on a Riemann surface behaves under deformation of the surface. With this model, we show that there are variation of the first eigenvalue of the laplacian and the conductance of the dynamical system, with the Fenchel–Nielsen coordinates, that characterize the surface.

Key Words

conductance Fenchel–Nielsen coordinates First eigenvalue of the Laplacian hyperbolic metric Riemann surface 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Selberg, A., ‘On the estimation of Fourier coefficients of modular forms’, in Theory of Numbers, Proceedings of the Symposium on Pure Mathematics, Vol. 8, A. L. Whiteman (ed.), 1965, American Mathematical Society, Providence RI, 1965, pp. 1–15.Google Scholar
  2. 2.
    Grácio, C. and Sousa Ramos, J., ‘Boundary maps and Fenchel–Nielsen coordinates’, International Journal of Bifurcation and Chaos 13(7), 2003, 1949–1958.MathSciNetCrossRefGoogle Scholar
  3. 3.
    Cheeger, J., ‘A lower bound for the smallest eigenvalue of the Laplacian’, in Problems in Analysis, Gunning (ed.), Princeton University Press, Princeton, 1970, pp. 195–199.Google Scholar
  4. 4.
    Buser, P., ‘Cubic graphs and the first eigenvalue of a Riemann surface’, Mathematische Zeitschrift 162, 1978, 87–99.MATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Buser, P., ‘A note on the isoperimetric constant’, Annales Scientifiques de l École Normale Superieure 15, 1982, 213–230.MATHMathSciNetGoogle Scholar
  6. 6.
    Brooks, R., ‘Spectral geometry and the Cheeger constant’, In Friedman, J. (ed.), in Expanding Graphs, Proceedings of the DIMACS Workshop, American Mathematical Society, 1993, pp. 5–19.Google Scholar
  7. 7.
    Fernandes, S. and Sousa Ramos, J., ‘Spectral invariants of iterated maps of the interval’, Grazer Mathematische Berichte 346, 2004, 113–122.MathSciNetGoogle Scholar
  8. 8.
    Grácio, C. and Sousa Ramos, J., ‘Symbolic dynamics and hyperbolic groups’, Grazer Mathematische Berichte 339, 1999, 195–206.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Departamento de MatemáticaUniversidade de ÉvoraÉvoraPortugal
  2. 2.Departamento de MatemáticaInstituto Superior TécnicoLisboaPortugal

Personalised recommendations