Nonlinear Dynamics

, Volume 44, Issue 1–4, pp 55–61 | Cite as

A Chaotic Circuit with Ferroelectric Nonlinearity

  • Luigi Fortuna
  • Mattia Frasca
  • Salvatore Graziani
  • Salvatore Reddiconto


In this paper, the possibility of observing strange attractors in an electronic circuit including a nonlinear ferroelectric component has been investigated. The ferroelectric constitutes the medium interposed between the two plates of a capacitor. A circuit including the nonlinearity of the ferroelectric has been designed, while the parameters have been found by performing numerical integration with respect to different values of them. The circuit has been realized on a discrete components board. Experimental results, showing that for a suitable range of parameters a chaotic attractor emerges, are reported.

Key Words

chaos nonlinear circuits ferroelectric 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lorenz, E. N., ‘Deterministic nonperiodic flow’,J. Atmosph. Sci. 20, 1963, 130–141.CrossRefGoogle Scholar
  2. 2.
    Madan, R. N.,Chua's Circuit: A Paradigm for Chaos. World Scientific Series on Nonlinear Sciences, Series B, Vol. 1, World Scientific, Singapore, 1993.Google Scholar
  3. 3.
    Saito, T., ‘Reality of chaos in four-dimensional hysteretic circuits’,IEEE Trans. Circuits Syst. I 38(12), 1991, 1517–1524.MATHCrossRefGoogle Scholar
  4. 4.
    Mitsubori, K. and Saito, T., ‘A four-dimensional plus hysteresis chaos generator’,IEEE Trans. Circuits Syst. I 41(12), 1994, 782–789.CrossRefGoogle Scholar
  5. 5.
    Varrientos, J. E. and Sanchez-Sinencio, E., ‘A 4-D chaotic oscillator based on a differential hysteresis comparator’,IEEE Trans. Circuits Syst. I 45(1), 1998, 3–10.CrossRefGoogle Scholar
  6. 6.
    Nishio, Y. and Mori, S., ‘Chaotic phenomena in an LCR oscillator with a hysteresis inductor’, in1991 IEEE International Symposium on Circuits and Systems, Singapore, 5, 1991, 2873–2876.Google Scholar
  7. 7.
    Saito, T., ‘An approach toward higher dimensional hysteresis chaos generator’,IEEE Trans. Circuits Syst. I 37(3), 1990, 399–409.MATHCrossRefGoogle Scholar
  8. 8.
    Banning, R., de Koning, W. L., Adriaens, H. J. M. T. A., and Koops, R. K., ‘State-space analysis and identification for a class of hysteretic systems’,Automatica 37, 2001, 1883–1892.CrossRefGoogle Scholar
  9. 9.
    Richter, H., Misawa, E. A., Lucca, D. A., and Lu, H., ‘Modelling nonlinear behavior in a piezoelectric actuator’,Precis. Eng. 25, 2001, 128–137.CrossRefGoogle Scholar
  10. 10.
    Jiang, B., Zurcher, P., Jones, R. E., Gillespie, S. J., and Lee, J. C., ‘Computationally efficient ferroelectric capacitor model for circuit simulation’, in1997 Symposium on VLSI Technology Digest of Technical Papers, Kyoto, Japan, 1997.Google Scholar
  11. 11.
    Mayergoyz, I. D.,Mathematical Modelling of Hysteresis, Springer-Verlag, New York, 1991.Google Scholar
  12. 12.
    Kittel, C.,Introduction to Solid State Physics, Wiley, New York, 1986.Google Scholar
  13. 13.
    Arena, P., Baglio, S., Fortuna, L., and Manganaro, G., ‘Hyperchaos from cellular neural networks’,IEE Electron. Lett. 31(4), 1995, 250–251.Google Scholar
  14. 14.
    Habel, R., Blochwitz, S., and Beige, H., ‘Controlled chaos in ferroelectric systems,’Applications of Ferroelectrics, 1994, ISAF '94, pp. 229–232.Google Scholar
  15. 15.
    Lines, M. E. and Glass, A. M.,Principles and Applications of Ferroelectrics and Related Materials, Oxford University Press, Oxford, 1996.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • Luigi Fortuna
    • 1
  • Mattia Frasca
    • 1
  • Salvatore Graziani
    • 1
  • Salvatore Reddiconto
    • 1
  1. 1.Dipartimento di Ingegneria Elettrica Elettronica e dei SistemiUniversitá degli Studi di CataniaCataniaItaly

Personalised recommendations