Skip to main content
Log in

Smart Baffle Placement for Chaotic Mixing

  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

It is well known that fluid mixing can often be improved by the introduction of ‘baffles’ into the flow – the problem of baffle placement is examined here for chaotic fluid mixing of a highly viscous fluid. A simple model for a planetary mixer, with one stirring element, is modified by the introduction of one or more stationary baffles. Regular regions of poor mixing in the unbaffled flow are shown to be significantly reduced in size if the location of the baffles is chosen so that the flow necessarily generates ‘topological chaos’. By contrast, the positioning of baffles in superficially similar ways that do not generate such ‘topological chaos’ fails to provide a similar improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lorenz, E. N., ‘Deterministic nonperiodic flow’, Journal of Atmospheric Sciences 20, 1963, 130–141.

    Article  ADS  Google Scholar 

  2. Ueda, Y., The Road to Chaos, Aerial Press, Santa Cruz, California, 1992.

  3. Smith, L. A., ‘What might we learn from climate forecasts?’, Proceedings of the National Academy of Sciences 4, 2002, 2487–2492.

    Google Scholar 

  4. Thompson, J. M. T., Bishop S. R., and Leung L. M., ‘Fractal basins and chaotic bifurcations prior to escape from a potential well’, Physics Letters A 121, 1987, 116–120.

    Article  CAS  ADS  MathSciNet  Google Scholar 

  5. Paulusa, M. P. and Braff, D. L., ‘Chaos and schizophrenia: Does the method fit the madness?’, Biological Psychiatry 53, 2003, 3–11.

    Google Scholar 

  6. Pogun, S., ‘Are attractors ‘strange’, or is life more complicated than the simple laws of physics?’, Biosystems 63, 2001, 101–114.

    Article  CAS  PubMed  Google Scholar 

  7. Mackey, M. C. and Glass, L., ‘Oscillations and chaos in physiological control systems’, Science 197, 1977, 287–289.

    CAS  ADS  PubMed  Google Scholar 

  8. Holden, A. V., Winlow, W., and Haydon, P. G., ‘The induction of periodic and chaotic activity in a molluscan neurone’, Biological Cybernetics 43, 1982, 169–173.

    Article  CAS  PubMed  MathSciNet  Google Scholar 

  9. Calin, G. A., Vasilescub, C, Negrinia, M., and Barbanti–Brodanoc, G., ‘Genetic chaos and antichaos in human cancers’, Medical Hypotheses 60, 2003, 258–262.

    Article  CAS  PubMed  Google Scholar 

  10. Wellsa, H., Straussb, E. G., Rutterc, M. A., and Wells, P. H., ‘Mate location, population growth and species extinction’, Biological Conservation 86, 1998, 317–324.

    Google Scholar 

  11. Keilis–Boroka, V., Ismail-Zadeh, A., Kossobokova, V., and Shebalina, P., ‘Non-linear dynamics of the lithosphere and intermediate-term earthquake prediction’, Tectonophysics 338, 2001, 247–260.

    Google Scholar 

  12. Tiwari, R. K., Srilakshmi S., and Rao, K. N. N., ‘Nature of earthquake dynamics in the central Himalayan region: A nonlinear forecasting analysis’, Journal of Geodynamics 35, 2003, 273–287.

    Article  Google Scholar 

  13. Tonona, F., Bernardinib, A., and Elishakoffc, I., ‘Concept of random sets as applied to the design of structures and analysis of expert opinions for aircraft crash’, Chaos, Solitons and Fractals 10, 1999, 1855–1868.

    Google Scholar 

  14. Rosser, J., From Catastrophe Theory to Chaos: A General Theory of Economic Discontinuities, Kluwer Academic Publishers, Norwell, MA, 1992.

    Google Scholar 

  15. Ionita, S., ‘A chaos theory perspective on system's failure’, Information Sciences 127, 2000, 193–215.

    Article  Google Scholar 

  16. Weisberg, H. F., ‘Nonlinear models of electoral change: The implications of political time and chaos theory for the study of mass political behaviour’, Electoral Studies 17, 1998, 369–382.

    Article  Google Scholar 

  17. Ott, E., Grebogi, C., and Yorke, J. A., ‘Controlling chaos’, Physical Review Letters 64, 1990, 1196–1199.

    ADS  PubMed  MathSciNet  Google Scholar 

  18. Raoa, R. K. A. and Yeragani, V. K., ‘Decreased chaos and increased nonlinearity of heart rate time series in patients with panic disorder’, Autonomic Neuroscience 88, 2001, 99–108.

    Google Scholar 

  19. Yeragani, V. K., Rao, K. A. R. K., Smitha, M. R., Pohl, R. B., Balon, R., and Srinivasan, K., ‘Diminished chaos of heart rate time series in patients with major depression’, Biological Psychiatry 51, 2002, 733–744.

    Article  PubMed  Google Scholar 

  20. Palacios, A. and Juarez, H., ‘Cryptography with cycling chaos’, Physics Letters A 303, 2002, 345–351.

    Article  CAS  ADS  MathSciNet  Google Scholar 

  21. van den Bleek, C. M., Coppensa, M.-O., and Schoutenb, J. C., ‘Application of chaos analysis to multiphase reactors’, Chemical Engineering Science 57, 2002, 4763–4778.

    CAS  Google Scholar 

  22. Clifford, M. J., Cox, S. M., and Roberts, E. P. L., ‘Lamellar modelling of reaction, diffusion and mixing in a two-dimensional flow’, Chemical Engineering Journal 71, 1998, 49–56.

    Article  CAS  Google Scholar 

  23. Ottino, J. M., The Kinematics of Mixing: Stretching, Chaos and Transport, Cambridge University Press, Cambridge, 1989.

    Google Scholar 

  24. Boyland, P. L., Aref, H., and Stremler, M. A., ‘Topological fluid mechanics of stirring’, Journal of Fluid Mechanics 403, 2000, 277–304.

    Article  ADS  MathSciNet  Google Scholar 

  25. Acheson, D. J., Elementary Fluid Dynamics, Clarendon Press, Oxford, 1996.

    Google Scholar 

  26. Milne-Thomson, L. M., Theoretical Hydrodynamics, Macmillan, New York, 1968.

    Google Scholar 

  27. Brown, M. G. and Samelson, R. M., ‘Particle motion in vorticity-conserving, two-dimensional incompressible flows’, Physics of Fluids 6, 1994, 2875–2876.

    Article  ADS  Google Scholar 

  28. Finn, M. D., Cox, S. M., and Byrne, H. M., ‘Mixing measures for a two-dimensional chaotic Stokes flow’, Journal of Engineering Mathematics 48, 2004, 129–155.

    Article  MathSciNet  Google Scholar 

  29. Aref, H., ‘Stirring by chaotic advection’, Journal of Fluid Mechanics 143, 1984, 1–21.

    ADS  MATH  MathSciNet  Google Scholar 

  30. Aref, H., ‘The development of chaotic advection’, Physics of Fluids 14, 2002, 1315–1325.

    CAS  ADS  MathSciNet  Google Scholar 

  31. Aref, H. and Balachandar, S., ‘Chaotic advection in a Stokes flow’, Physics of Fluids 29, 1986, 3515–3521.

    Article  ADS  MathSciNet  Google Scholar 

  32. Finn, M. D. and Cox, S. M., ‘Stokes flow in a mixer with changing geometry’, Journal of Engineering Mathematics 41, 2001, 75–99.

    Article  CAS  MathSciNet  Google Scholar 

  33. Finn, M. D., Cox, S. M., and Byrne, H. M., ‘Topological chaos in inviscid and viscous mixers’, Journal of Fluid Mechanics 493, 2003, 345–361.

    Article  ADS  MathSciNet  Google Scholar 

  34. Tufillaro, N. B., Abbot, T., and Reilly, J., An Experimental Approach to Nonlinear Dynamics and Chaos, Addison Wesley, Redwood City, CA, 1992.

    Google Scholar 

  35. Hobbs, D. M., Swanson, P. D., and Muzzio, F. J., ‘Numerical characterization of low Reynolds number flow in the Kenics static mixer’, Chemical Engineering Science 53, 1998, 1565–1584.

    CAS  Google Scholar 

  36. Rauline, D., Tanguy, P. A., Le Blévec, J.–M., and Bousquet, J., ‘Numerical investigation of the performance of several static mixers’, Canadian Journal of Chemical Engineers 76, 1998, 527–535.

    CAS  Google Scholar 

  37. Zalc, J. M., Szalai, E. S., Muzzio, F. J., and Jaffer, S., ‘Characterization of flow and mixing in an SMX static mixer’, Journal of American Institute of Chemical Engineers 48, 2002, 427–436.

    CAS  Google Scholar 

  38. Vikhansky, A., ‘On the applicability of topological chaos to mixer design’, Chemical Engineering Science 2003 (submitted).

  39. Finn, M. D., Cox, S. M., and Byrne, H. M., ‘Chaotic advection in a braided pipe mixer’, Physics of Fluids 15, 2003, 77–80.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Clifford.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clifford, M.J., Cox, S.M. Smart Baffle Placement for Chaotic Mixing. Nonlinear Dyn 43, 117–126 (2006). https://doi.org/10.1007/s11071-006-0755-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-006-0755-9

Key Words

Navigation