Advertisement

Nonlinear Dynamics

, Volume 39, Issue 1–2, pp 95–112 | Cite as

A General Data-Based Approach for Developing Reduced-Order Models of Nonlinear MDOF Systems

  • S. F. Masri
  • J. P. Caffrey
  • T. K. Caughey
  • A. W. Smyth
  • A. G. Chassiakos
Article

Abstract

A general procedure is presented for analyzing dynamic response measurements from complex multi-degree-of-freedom nonlinear systems incorporating arbitrary types of nonlinear elements. The analysis procedure develops a reduced-order, nonlinear model whose format is convenient for numerical simulation studies. No information about the system’s mass properties is needed, and only the applied excitations and corresponding response are needed to develop the model whose dimension is compatible with the number of available sensors. The utility of the approach is demonstrated by means of a three-degree-of-freedom system incorporating polynomial-type nonlinear features with hardening as well as softening characteristics.

Key words

identification modeling nonlinear systems simulation validation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mohammad, K. S., Worden, K., and Tomlinson, G. R., ‘Direct parameter estimation for linear and non-linear structures’, Journal of Sound and Vibration 153(3), 1992, 471–499.CrossRefGoogle Scholar
  2. 2.
    Housner, G. W., Bergman, L. A., Caughey, T. K., Chassiakos, A. G., Claus, R. O., Masri, S. F., Skelton, R. E., Soong, T. T., Spencer, B. F., and Yao, J. T. P., ‘Structural control: Past, present and future’, ASCE Journal of Engineering Mechanics (Special Issue) 123(9), 1997, 897–971.CrossRefGoogle Scholar
  3. 3.
    Ghanem, R. and Romeo, F., ‘A wavelet-based approach for model and parameter identification of nonlinear systems’, International Journal of Non-Linear Mechanics 36, 2001, 835–859.CrossRefGoogle Scholar
  4. 4.
    Worden, K. and Tomlinson, G. R., Nonlinearity in Structural Dynamics: Detection, Identification and Modelling, Institute of Physics, London, 2001.Google Scholar
  5. 5.
    Vestroni, F. and Noori, M., ‘Hysteresis in mechanical systems – modeling and dynamic response’, Special Issue, International Journal of Non-Linear Mechanics 37, 2002, 1261–1459.CrossRefGoogle Scholar
  6. 6.
    Masri, S. F., Miller, R. K., Saud, A. F., and Caughey, T. K., ‘Identification of nonlinear vibrating structures; Part I: Formulation’, ASME Journal of Applied Mechanics 109, December 1987, 918–922; “Part II: Applications”, 923–929.Google Scholar
  7. 7.
    Worden, K., ‘Data processing and experimental design for the restoring force method, Part I: Integration and differentiation of measured time data’, Mechanical Systems and Signal Processing 4, 1990, 295–319.CrossRefGoogle Scholar
  8. 8.
    Smyth, A. W. and Pei, J.-S., ‘Integration of measured response signals for nonlinear structural health monitoring’, in Proceedings of the 3rd US-Japan Workshop on Nonlinear System Identification and Health Monitoring, Los Angeles, California, October 20–21, 2000.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • S. F. Masri
    • 1
  • J. P. Caffrey
    • 1
  • T. K. Caughey
    • 2
  • A. W. Smyth
    • 3
  • A. G. Chassiakos
    • 4
  1. 1.School of EngineeringUniversity of Southern CaliforniaLos AngelesU.S.A.
  2. 2.Division of Engineering & Applied ScienceCalifornia Institute of TechnologyPasadenaU.S.A.
  3. 3.School of Engineering & Applied ScienceColumbia UniversityNew YorkU.S.A.
  4. 4.School of EngineeringCalifornia State UniversityLong BeachU.S.A.

Personalised recommendations