Nonlinear Dynamics

, Volume 39, Issue 1–2, pp 79–94 | Cite as

Continuous-Time Bilinear System Identification

  • Jer-Nan Juang


The objective of this paper is to describe a new method for identification of a continuous-time multi-input and multi-output bilinear system. The approach is to make judicious use of the linear-model properties of the bilinear system when subjected to a constant input. Two steps are required in the identification process. The first step is to use a set of pulse responses resulting from a constant input of one sample period to identify the state matrix, the output matrix, and the direct transmission matrix. The second step is to use another set of pulse responses with the same constant input over multiple sample periods to identify the input matrix and the coefficient matrices associated with the coupling terms between the state and the inputs. Numerical examples are given to illustrate the concept and the computational algorithm for the identification method.

Key words

bilinear system Markov parameters nonlinear system system identification system realization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Juang, J.-N., Applied System Identification, Prentice Hall, Englewood Cliffs, New Jersey, 1994.Google Scholar
  2. 2.
    Juang, J.-N. and Phan, M. Q., Identification and Control of Mechanical Systems, Cambridge University Press, New York, 2001.Google Scholar
  3. 3.
    Natke, H. G., Juang, J. N., and Gawronski, W., ‘A brief review on the identification of nonlinear mechanical systems’, in Proceedings of the 6th International Modal Analysis Conference, Orlando, Florida, February 1–4, 1988, pp. 1569– 1574.Google Scholar
  4. 4.
    Bruni, C., DiPillo, G., and Koch, G., ‘On the mathematical models of bilinear systems’, Ricerche di Automatica 2(1), 1971, 11–26.Google Scholar
  5. 5.
    Bruni, C., DiPillo, G., and Koch, G., ‘Bilinear systems: An appealing class of nearly linear systems in theory and application’, IEEE Transaction Automatic Control AC-19, 1974, 334–348.CrossRefGoogle Scholar
  6. 6.
    Mohler, R. R. and Kolodziej, W. J., ‘An overview of bilinear system theory and applications’, IEEE Transactions on Systems, Man and Cybernetics SMC-10, 1980, 683–688.Google Scholar
  7. 7.
    Mohler, R. R., Nonlinear Systems: Vol. II, Applications to Bilinear Control, Prentice-Hall, Englewood Cliffs, New Jersey, 1991.Google Scholar
  8. 8.
    Elliott, D. L., ‘Bilinear systems’, in Encyclopedia of Electrical Engineering, Vol. II, J. Webster (ed.), Wiley, New York, 1999, pp. 308–323.Google Scholar
  9. 9.
    Rangarathan, V., Jha, A. N., and Rajamani, V. S., ‘Recursive estimation algorithms for bilinear and nonlinear systems using a polynomial approach’, International Journal of Control 44(2), 1986, 419–426.Google Scholar
  10. 10.
    Billings, S. A. and Voon, W. S. F., ‘Piecewise linear identification of non-linear systems’, International Journal of Control 46(1), 1987, 215–235.Google Scholar
  11. 11.
    Dai, H. and Sinha, N. K., ‘Robust identification of systems using block-pulse functions’, Control Theory and Applications, IEE Proceedings-D 139(3), 1992, 308–316.Google Scholar
  12. 12.
    Ralston, J. C. and Boashash, B., ‘Identification of bilinear system using band-limited regression’, in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, Munich, Germany, April 1997, pp. 3925– 3928.Google Scholar
  13. 13.
    Banerjee, A., Arkun, Y., Ogunnaike, B., and Pearson, R., ‘Estimation of nonlinear systems using linear multiple models’, AIChE Journal 43(5), 1997, 1204–1226.CrossRefGoogle Scholar
  14. 14.
    Dunoyer, A., Balmer, L., Burnham, K. J., and James, D. J. G., ‘On the discretization of single-input single-output bilinear systems’, International Journal of Control 68(2), 1997, 361–372.CrossRefGoogle Scholar
  15. 15.
    Brewer, J., ‘Bilinear equations in ecology’, in Systems and Control Encyclopedia: Theory, Technology, Applications, Vol. 1, M. G. Singh (ed.), Pergamon Press, Oxford, 1987, pp. 414–417.Google Scholar
  16. 16.
    Daniel-Berhe, S. and Unbehauen, H., ‘Bilinear continuous-time systems identification via Hartley-based modulating functions’, Automatica 34(4), 1998, 499–503.CrossRefGoogle Scholar
  17. 17.
    Daniel-Berhe, S. and Unbehauen, H., ‘State space identification of bilinear continuous-time canonical systems via batch scheme Hartley’, in Proceedings of the 37th IEEE Conference on Decision and Control, Tampa, Florida, December 1998, pp. 4482–4487.Google Scholar
  18. 18.
    Boukhris, A., Mourot, G., and Ragot, J., ‘Non-linear dynamic system identification: A multi-model approach’, International Journal of Control 72(7), 1999, 591–604.CrossRefGoogle Scholar
  19. 19.
    Verdult, V., ‘Nonlinear System Identification: A State-Space Approach’, Ph.D. Thesis, Twente University Press, The Netherlands, 2002.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.NASA Langley Research CenterStructural Dynamics BranchHampton, VAU.S.A.

Personalised recommendations