Nonlinear Dynamics

, Volume 42, Issue 1, pp 79–95 | Cite as

On the Hysteretic Bouc–Wen Model

Part II: Robust Parametric Identification


This paper deals with the problem of identifying the parameters of the hysteretic Bouc–Wen model. In the existing literature, the methods devoted to this problem rely mainly on numerical simulations and do not have, to a very large extent, a rigorous mathematical justification. Our method consists in exciting the hysteretic system with a periodic input and obtain the desired parameters from the resulting limit cycle. The identification method that we propose has a rigorous mathematical basis as it based on the analytic description of the limit cycle, and, unlike existing identification methods for the Bouc–Wen model, gives guaranteed relative errors between the (unknown) exact model parameters and their corresponding estimates. We also prove that this method is robust with respect to constant and T-periodic disturbances commonly present in any laboratory experiment. A numerical simulation example illustrates the use of our identification method.


Bouc–Wen model hysteresis identification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brailovski, V., Prokoshkin, S., Terriault, P., and Trochu, F., ‘Shape Memory Alloys: Fundamentals, Modeling and Applications’, Université du Québec, École de Technologie Supérieure, National Library of Canada, 2003.Google Scholar
  2. 2.
    Faravelli, L., ‘Modelling the response of an elastomeric base isolator’, Journal of Structural Control 8(1), 2001, 17–30.Google Scholar
  3. 3.
    Ni, Y. Q., Ko, J. M., and Wong, C. W., ‘Identification of non-linear hysteretic isolators from periodic vibration tests’, Journal of Sound and Vibration 217(4), 1998, 737–756.CrossRefGoogle Scholar
  4. 4.
    Smyth, A. W., Masri, S. F., Kosmatopoulos, E. B., Chassiakos, A. G., and Caughey, T. K., ‘Development of adaptive modeling techniques for non-linear hysteretic systems’, International Journal of Non-Linear Mechanics 37, 2002, 1435–1451.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Departament de Matemàtica Aplicada IIIUniversitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations