Landslides along the Lago Maggiore western coast (northern Italy): intense rainfall as trigger or concomitant cause?

Abstract

The Lago Maggiore catchment is characterized by medium to high altitude (up to 4633 m a.s.l. with a median of 1270 m a.s.l.), high precipitation (~ 1700 mm/yr), and brittle tectonic deformation of impermeable rocks, such as granite and gneiss, that are characterized by a predisposition to slope failure. We analysed daily rainfall data associated with 38 landslides that occurred between 1980 and 2017 from meteorological stations placed into four sub-basins. The purpose was to determine whether or not extreme rainfall events exceeded landslides thresholds reported by previous studies. A statistical analysis using the RClimDex package was done, to verify changes in extreme rainfall over time. A spatial approach using Inverse Distance Weighting (IDW) in QGIS was used to extrapolate rainfall data specific to landslide areas, as well as GIS techniques and processing tools to conduct geomorphic analyses. Finally, a multivariate analysis, (general linear model), was used to understand associations between variables (landslide types, lithology, valley, elevation, slope, land use, rainfall, and the presence of rivers, roads, paths, and buildings), known to affect the generation of landslides. Results show extreme rainfall events to be a secondary factor in the triggering of landslides, whereas the most significant factors are presence of building, proximity to rivers and lithology. It was found that intense rainfall is a concomitant cause to landslides in some instances but does not play a role in others.

This is a preview of subscription content, access via your institution.

Fig.1
Fig.2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Amatruda G et al (2004) A key approach: the IMIRILAND project method. In: Bonnard Ch, Forlati F, Scavia C (eds) Identification and mitigation of large landslides risks in Europe. IMIRILAND PROJECT—European Commission—Fifth Framework Program. A.A. Balkema, Amsterdam, pp 13–43

    Google Scholar 

  2. Arnone E, Noto LV, Lepore C, Bras RL (2011) Physically-based and distributed approach to analyse rainfall-triggered landslides at watershed scale. Geomorphology 133:121–131. https://doi.org/10.1016/j.geomorph.2011.03.019

    Article  Google Scholar 

  3. ARPA (2014) Hydro-meteorological events since 9 to 17 November 2014. Dipartimento Sistemi Previsionali, Torino p. 63 (in Italian)

  4. Aydinoglu AC, Bilgin MS (2015) Developing an open geographic data model and analysis tools for disaster management: landslide case. Nat Hazards Earth Syst Sci 15(2):335–347

    Article  Google Scholar 

  5. Baeza C, Corominas J (2001) Assessment of shallow landslide susceptibility by means of multivariate statistical techniques. Earth Surf Process Landform 26:1251–1263. https://doi.org/10.1002/esp.263

    Article  Google Scholar 

  6. Barbanti L (1994) Osservazioni sul Lago Maggiore. Lineamenti geografici del territorio del Verbano. Circolo del Pallanzotto, Comune di Verbania: 113

  7. Bechmann M, Stalnacke P, Kvaerno S, Eggestad HO, Oygarden L (2009) Integrated tool for risk assessment in agricultural management of soil erosion and losses of phosphorus and nitrogen. Sci Total Environ 407:749–759. https://doi.org/10.1016/j.scitotenv.2008.09.016

    Article  Google Scholar 

  8. Beniston M, Stoffel M (2016) Rain-on-snow events, floods and climate change in the Alps: events may increase with warming up to 4 C and decrease thereafter. Sci Total Environ 571:228–236

    Article  Google Scholar 

  9. Bennett KE, Walsh JE (2015) Spatial and temporal changes in indices of extreme precipitation and temperature for Alaska. Int J Climatol 35(7):1434–1452. https://doi.org/10.1002/joc.4067

    Article  Google Scholar 

  10. Berti M, Martina MLV, Franceschini S, Pignone S, Simoni A, Pizziolo M (2012) Probabilistic rainfall thresholds for landslide occurrence using a Bayesian approach. J Geophys Res 117:F04006. https://doi.org/10.1029/2012JF002367

    Article  Google Scholar 

  11. Boardman J (2010) A short history of muddy floods. Land Degrad Dev 21:303–309. https://doi.org/10.1002/ldr.1007

    Article  Google Scholar 

  12. Bodansky D, Brunnée J, Rajamani L (2017) International climate change law. Oxford University Press

  13. Bodini A, Cossu QA (2009) Vulnerability assessment of Central-East Sardinia (Italy) to extreme rainfall events. Nat Hazards Earth Syst Sci 10:61–72. https://doi.org/10.5194/nhess-10-61-2010

    Article  Google Scholar 

  14. Bougeault P, Binder P, Buzzi A, Dirks R, Houze RA Jr, Kuettner J, Smith RB, Steinacker R, Volkert H (2001) The MAP special observing period. Bull Am Meteor Soc 82:433–462. https://doi.org/10.1175/1520-0477(2001)082%3c0433:TMSOP%3e2.3.CO;2

    Article  Google Scholar 

  15. Bursac Z, Gauss CH, Williams DK, Hosmer DW (2008) Purposeful selection of variables in logistic regression. Source Code Biol Med 3:17. https://doi.org/10.1186/1751-0473-3-17

    Article  Google Scholar 

  16. Caine N (1980) The rainfall intensity-duration control of shallow landslides and debris flows. Geografiska Annaler: Ser A Phys Geog 62(1–2):23–27. https://doi.org/10.1080/04353676.1980.11879996

    Article  Google Scholar 

  17. Cascini L, Bonnard CH, Corominas J, Jibson R, Montero-Olarte J (2005) Landslide hazard and risk zoning for urban planning and development. In: Hungr O, Fell R, Couture R, Eberthardt E (eds) Landslide risk management. Taylor and Francis Group, London, pp 199–235

    Google Scholar 

  18. Cevasco A, Pepe G, Brandolini P (2014) The influences of geological and land use settings on shallow landslides triggered by an intense rainfall event in a coastal terraced environment. Bull Eng Geol Env 73:859. https://doi.org/10.1007/s10064-013-0544-x

    Article  Google Scholar 

  19. Chacón J, Irigaray Fernández C, Fernández T, El Hamdouni R (2006) Landslides in the main urban areas of the Granada province, Andalucia, Spain. IAEG 2006, Nottingham IAEG2006, Paper number 414

  20. Chang KT, Chiang SH (2009) An integrated model for predicting rainfall-induced landslides. Geomorphology 105:366–373. https://doi.org/10.1016/j.geomorph.2008.10.012

    Article  Google Scholar 

  21. Ciampittiello M, Dresti C, Saidi H (2014) Indagini sul bacino imbrifero. Caratteristiche idrologiche. Ricerche sull'evoluzione del Lago Maggiore. Aspetti limnologici. Programma triennale 2013–2015.Campagna 2013. Commissione Internazionale per la Protezione delle Acque Italo-Svizzere (Ed.). 7–14 (in Italian)

  22. Cigna F, Bianchini S, Casagli N (2013) How to assess landslide activity and intensity with Persistent Scatterer Interferometry (PSI): the PSI_based matrix approach. Lanslides 10:267–283. https://doi.org/10.1007/s10346-012-0335-7

    Article  Google Scholar 

  23. Costantini EAC, Lorenzetti R (2013) Soil degradation processes in the Italian agricultural and forest ecosystems. Italian J Agron 8:233–243. https://doi.org/10.4081/ija.2013.e28

    Article  Google Scholar 

  24. Crosta G (1998) Regionalization of rainfall thresholds: an aid to landslide hazard evaluation. Environ Geol 35:131–145. https://doi.org/10.1007/s002540050300

    Article  Google Scholar 

  25. D’Elia F (2003) Progetto per la messa in funzione del depuratore di Aurano ed il suo collegamento alla rete fognaria. Relazione Tecnica. P. 30 (in Italian)

  26. Dahal RK, Hasegawa S (2008) Representative rainfall thresholds for landslides in the Nepal Himalaya. Geomorphology 100:429–433. https://doi.org/10.1016/j.geomorph.2008.01.014

    Article  Google Scholar 

  27. Dal Piaz G (1992) Le Alpi dal M. Bianco al Lago Maggiore, Guide Geologiche Regionali. Società Geologica Italiana, BE-MA ed., 3(2). p 311 (in Italian)

  28. Deb SK, El-Kadi AI (2009) Susceptibility assessment of shallow landslides on Oahu, Hawaii, under extreme-rainfall events. Geomorphology 108:219–233. https://doi.org/10.1016/j.geomorph.2009.01.009

    Article  Google Scholar 

  29. Erxleben J, Elder K, Davis R (2002) Comparison of spatial interpolation methods for estimating snow distribution in the Colorado Rocky Mountains. Hydrol Process 16:3627–3649

    Article  Google Scholar 

  30. EU (2006) Proposal for a directive of the European Parliament and of the Council establishing a framework for the protection of soil and amending Directive 2004/35/EC. Brussels, 232 final p 30

  31. Floris M, Bozzano F (2008) Evaluation of landslide reactivation: a modified rainfall threshold model based on historical records of rainfall and landslides. Geomorphology 94:40–57. https://doi.org/10.1016/j.geomorph.2007.04.009

    Article  Google Scholar 

  32. Frei C, Schär C (1998) A precipitation climatology of the Alps from the high-resolution rain-gauge observations. Int J Climatol 18:873–900. https://doi.org/10.1002/(SICI)1097-0088(19980630)18:8%3c873::AID-JOC255%3e3.0.CO;2-9

    Article  Google Scholar 

  33. Frei C, Schär C (2001) Detection probability of trends in rare events: theory and application to heavy precipitation in the Alpine region. J Clim 14:1568–1584. https://doi.org/10.1175/1520-0442(2001)014%3c1568:DPOTIR%3e2.0.CO;2

    Article  Google Scholar 

  34. Gabet EJ, Burbank DW, Putkonen JK, Pratt-Sitaula BA, Ojha T (2004) Rainfall thresholds for landsliding in the Himalayas of Nepal. Geomorphology 63:131–143. https://doi.org/10.1016/j.geomorph.2004.03.011

    Article  Google Scholar 

  35. Gariano SL, Brunetti MT, Iovine G, Melillo M, Peruccacci S, Terranova O, Vennari C, Guzzetti F (2015) Calibration and validation of rainfall thresholds for shallow landslide forecasting in Sicily, southern Italy. Geomorphology 228:653–665. https://doi.org/10.1016/j.geomorph.2014.10.019

    Article  Google Scholar 

  36. Giannecchini R, Naldini D, D’Amato Avanzi G, Puccinelli A (2007) Modelling of the initiation of rainfall-induced debris flows in the Cardoso basin (Apuan Alps, Italy). Quatern Int 171–172:108–117. https://doi.org/10.1016/j.quaint.2007.01.011

    Article  Google Scholar 

  37. Giardino M, Zerbato M (2006) Relazioni fra attività vitivinicola e dissesto idrogeologico: esempi di studio dalle Terre del Barolo. Bollettino della Società Geologica Italiana., volume speciale 6, 175–189. ISSN: 1722–2818

  38. Glade T, Crozier M, Smith P (2000) Applying probability determination to refine landslide-triggering rainfall thresholds using an empirical “antecedent daily rainfall model.” Pure Appl Geophys 157:1059–1079. https://doi.org/10.1007/s000240050017

    Article  Google Scholar 

  39. González-Dı́ez A, Remondo J, de Terán JRD, Cendrero A (1999) A methodological approach for the analysis of the temporal occurrence and triggering factors of landslides. Geomorphology 30(1–2):95–113

    Article  Google Scholar 

  40. Gosiewska A, Biecek P (2018) Auditor: an R package for model-agnostic visual validation and diagnostic. arXiv:1809.07763

  41. Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res 3:1157–1182

    Google Scholar 

  42. Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study. Cent Italy Geomorphol 31(181):216. https://doi.org/10.1016/S0169-555X(99)00078-1

    Article  Google Scholar 

  43. Guzzetti F, Peruccacci S, Rossi M, Stark CP (2007) Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorol Atmos Phys 98:239–267. https://doi.org/10.1007/s00703-007-0262-7

    Article  Google Scholar 

  44. Hadi SJ, Tombul M (2018) Comparison of spatial interpolation methods of precipitation and temperature using multiple integration periods. J Indian Soc Rem Sens 46(7):1187–1199

    Article  Google Scholar 

  45. Haverkamp R, Debionne S, Viallet P, Angulo-Jaramillo R, de Condappa D (2006) Soil properties and moisture movement in the unsaturated zone. In: Delleur JW (ed) The handbook of groundwater engineering, 2nd edn. CRC Press, pp 6–59

  46. Hazra A, Reich BJ, Staicu AM (2020) A multivariate spatial skew-t process for joint modeling of extreme precipitation indexes. Environmetrics 31(3):e2602. https://doi.org/10.1002/env.2602

    Article  Google Scholar 

  47. Hungr O, Lerouei S, Picarelli L (2014) The Varnes classification of landslide types, an update. Landslides 11(2):167–194

    Article  Google Scholar 

  48. Keblouti M, Ouerdachi L, Boutaghane H (2012) Spatial interpolation of annual precipitation in Annaba-Algeria-comparison and evaluation of methods. Enrgy Proced 18:468–475

    Article  Google Scholar 

  49. Keller S, Atzl A (2014) Mapping natural hazard impacts on road infrastructure-the extreme precipitation in Baden-Wu¨rttemberg, Germany, June 2013. Int J Dis Risk Sci 5:227–241. https://doi.org/10.1007/s13753-014-0026-1

    Article  Google Scholar 

  50. Kusumastuti C, Weesakul S (2014) Extreme rainfall indices for tropical monsoon countries in Southeast Asia. Civ Eng Dimens 16(2):112–116. https://doi.org/10.9744/ced.16.2.112-116

    Article  Google Scholar 

  51. Larsen IJ, Montgomery DR (2012) Landslide erosion coupled to tectonics and river incision. Nat Geosci 5:468–473. https://doi.org/10.1038/ngeo1479

    Article  Google Scholar 

  52. Larsen IJ, Montgomery DR, Korup O (2010) Landslide erosion controlled by hillslope material. Nat Geosci 3:247–251. https://doi.org/10.1038/ngeo776

    Article  Google Scholar 

  53. Le Bissonais Y, Montier C, Jamagne M, Daroussin J, King D (2002) Mapping erosion risk forcultivated soil in France. CATENA 46:207–220. https://doi.org/10.1016/S0341-8162(01)00167-9

    Article  Google Scholar 

  54. Li J, and Heap AD (2008) A review of spatial interpolation methods for environmental scientists. Geoscience Australia, Record 2008/23, 137 pp

  55. Lin XS, Guo Y (2001) A study on coupling relation between landslide and rainfall. J Catastrophol 16:87–92

    Google Scholar 

  56. Lionello P, Bhend J, Buzzi A, Della-Marta PM, Krichak SO, Jansa A, Maheras P, Sanna A, Trigo IF, Trigo R (2006) Cyclones in the Mediterranean region: climatology and effects on the environment. Develop Earth Environ Sci Elsevier 4:325–372. https://doi.org/10.1016/S1571-9197(06)80009-1

    Article  Google Scholar 

  57. Liucci L, Melelli L, Suteanu C, Ponziani F (2017) The role of topography in the scaling distribution of landslide areas: a cellular automata modeling approach. Geomorphology 290:236–249. https://doi.org/10.1016/j.geomorph.2017.04.017

    Article  Google Scholar 

  58. Luino F (2005) Sequence of instability processes triggered by heavy rainfall in northwestern Italy. Geomorphology 66:13–39. https://doi.org/10.1016/j.geomorph.2004.09.010

    Article  Google Scholar 

  59. Luino F, De Graff J, Roccati A, Biddoccu M, Cirio CG, Faccini F, Turconi L (2020) Eighty years of data collected for the determination of rainfall threshold triggering shallow landslides and mud-debris flows in the Alps. Water 12(1):133

    Article  Google Scholar 

  60. Ma TH, Li CJ, Sun LL et al (2011) Rainfall intensity duration thresholds for landslides in Zhejiang region, China. Chin J Geol Hazard Control 22:20–25

    Google Scholar 

  61. McCullagh P, Nelder JA (1989) Generalized linear models, 2nd edn. Chapman & Hall, London, p 511

    Book  Google Scholar 

  62. Medina S, Houze RA Jr (2003) Air motions and precipitation growth in Alpine storms. Q J Royal Meteorol Soc 129:345–372. https://doi.org/10.1256/qj.02.13

    Article  Google Scholar 

  63. Miglietta MM, Buzzi A (2004) A numerical study of moist stratified flow regimes over isolated topography. Q J Royal Meteorol Soc 130:1749–1770. https://doi.org/10.1256/qj.02.225

    Article  Google Scholar 

  64. Miglietta MM, Rotunno R (2009) Numerical simulations of conditionally unstable flows over a ridge. J Atmos Sci 66:1865–1885. https://doi.org/10.1175/2009JAS2902.1

    Article  Google Scholar 

  65. Miglietta MM, Rotunno R (2010) Numerical simulations of Low-Cape flows over a Mountain Ridge. J Atmos Sci 67:2391–2401. https://doi.org/10.1175/2010JAS3378.1

    Article  Google Scholar 

  66. Morgan RPC (1988) Soil erosion and conservation. Longman, England, p 198

    Google Scholar 

  67. Nandy S, Singh C, Das KK, Kingma NC, Kushwaha SPS (2015) Environmental vulnerability assessment of eco-development zone of Great Himalayan National Park, Himachal Pradesh, India. Ecol Ind 57:182–195. https://doi.org/10.1016/j.ecolind.2015.04.024

    Article  Google Scholar 

  68. Naoum S, Tsanis IK (2004) Ranking spatial interpolation techniques using a GIS-based DSS. Global Nest Int J 6(1):1–20

    Google Scholar 

  69. Oksanen J (2010) Multivariate analysis of ecological communities in R: vegan tutorial. p 43. http://phylodiversity.net/azanne/csfar/images/8/85/Vegan.pdf

  70. Paliaga G, Luino F, Turcon L, De Graff JV, Faccini F (2000) Terraced landscapes on portofino promontory (Italy): identification. Geo-Hydrol Hazard Manag Water 12:435

    Google Scholar 

  71. Palladino MR, Viero A, Turconi L, Brunetti MT, Peruccacci S, Melillo M, Luino F, Deganutti AM, Guzzetti F (2018) Rainfall thresholds for the activation of shallow landslides in the Italian Alps: the role of environmental conditioning factors. Geomorphology 303:53–67

    Article  Google Scholar 

  72. Peruccacci S, Brunetti MT, Gariano SL, Melillo M, Rossi M, Guzzetti F (2017) Rainfall thresholds for possible landslide occurrence in Italy. Geomorphology 290:39–57. https://doi.org/10.1016/j.geomorph.2017.03.031

    Article  Google Scholar 

  73. Picanço J, Pinto CA, Mesquita MJ, Moraes M, Soares LF, Cardoso F (2014) Typology of rainfall-triggered landslides in the urban area of Antonina, Southern Brazil. In: Sassa K, Canuti P, Yin Y (eds) Landslide science for a safer geoenvironment. Springer, Cham, pp 379–383

    Google Scholar 

  74. Polemio M, Petrucci O (2000) Rainfall as a landslide triggering factor an overview of recent international research. In: Landslides in research, theory and practice. Thomas Telford Ltd., 1219–1226. http://hdl.handle.net/2122/7936

  75. Report CIPAIS (1978) onward) Commissione Internazionale per la Protezione delle Acque Italo-Svizzere, 1978 onward. Consiglio nazionale delle Ricerche, Istituto per lo Studio degli Ecosistemi, Verbania (in Italian)

    Google Scholar 

  76. Ricci V (2006) Principali tecniche di regressione con R. Lecture Notes.(in italian only), vito_ricci@ yahoo. it.

  77. Rimal B, Zhang L, Keshtkar H, Sun X, Rijal S (2018) Quantifying the spatiotemporal pattern of urban expansion and hazard and risk area identification in the Kaski District of Nepal. Land 7(1):37. https://doi.org/10.3390/land7010037

    Article  Google Scholar 

  78. Roccati A, Faccini F, Luino F, De Graff J, Turconi L (2019) Morphological changes and human impact in the Entella River floodplain (Northern Italy) from the 17th century. CATENA 182:104122

    Article  Google Scholar 

  79. Rotunno R, Houze AR Jr (2007) Lessons on orographic precipitation from the Mesoscale Alpine programme. Q J Royal Meteorol Soc 133:811–830. https://doi.org/10.1002/qj.67

    Article  Google Scholar 

  80. Saidi H, Ciampittiello M, Dresti C, Ghiglieri G (2013) The climatic characteristics of extreme precipitations for short-term intervals in the watershed of Lake Maggiore. Theoret Appl Climatol 113:1–15. https://doi.org/10.1007/s00704-012-0768-x

    Article  Google Scholar 

  81. Saidi H, Ciampittiello M, Dresti C, Ghiglieri G (2015) Assessment of trends in extreme precipitation events: a case study in Piedmont (North-West Italy). Water Resour Manage 29:63–80. https://doi.org/10.1007/s11269-014-0826-5

    Article  Google Scholar 

  82. Sansare DA, Mhaske SY (2020) Natural hazard assessment and mapping using remote sensing and QGIS tools for Mumbai city. India Natural Hazards 100(3):1117–1136. https://doi.org/10.1007/s11069-019-03852-5

    Article  Google Scholar 

  83. Schlögl M, Richter G, Avian M, Thaler T, Heiss G, Lenz G, Fuchs S (2019) On the nexus between landslide susceptibility and transport infrastructure: an agent-based approach. Nat Hazards Earth Syst Sci 19:201–219. https://doi.org/10.5194/nhess-19-201-2019

    Article  Google Scholar 

  84. Sköld YA, Nyberg L (2016) Effective and sustainable flood and landslide risk reduction measures: an investigation of two assessment frameworks. Int J Disaster Risk Sci 7:374–392. https://doi.org/10.1007/s13753-016-0106-5

    Article  Google Scholar 

  85. Stoffel M, Tiranti D, Huggel C (2014) Climate change impacts on mass movements—case studies from the European Alps. Sci Total Environ 493:1255–1266. https://doi.org/10.1016/j.scitotenv.2014.02.102

    Article  Google Scholar 

  86. Tebano C, Pasanisi F, Grauso S (2017) QMorphoStream: processing tools in QGIS environment for the quantitative geomorphic analysis of watersheds and river networks. Earth Sci Inf 10(2):257–268. https://doi.org/10.1007/s12145-016-0284-0

    Article  Google Scholar 

  87. Tiranti D, Rabuffetti D (2010) Estimation of rainfall thresholds triggering shallow landslides for an operational warning system implementation. Landslides 7:471–481. https://doi.org/10.1007/s10346-010-0198-8

    Article  Google Scholar 

  88. Trigo RM, Zêzere JL, Rodrigues ML, Trigo IF (2005) The influence of the North Atlantic Oscillation on rainfall triggering of landslides near Lisbon. Nat Hazards 36:331–354. https://doi.org/10.1007/s11069-005-1709-0

    Article  Google Scholar 

  89. UNISDR (2015) Poverty & death: disaster mortality 1996–2015. The United Nations Office for Disasters Risk Reduction and Center of Research on the Epidemiology and Disasters

  90. Varnes DJ (1978) Slope movement types and processes. In: Schuster R, Krizek, RJ (eds), Landslides: Analysis and Control. Special Report 176. Transportation and Road Research Board, National Academy of Science, Washington D.C., 11–33

  91. Vicente-Serrano SM, Saz-Sánchez MA, Cuadrat JM (2003) Comparative analysis of interpolation methods in the middle Ebro Valley (Spain): application to annual precipitation and temperature. Climate Res 24:161–180

    Article  Google Scholar 

  92. WP/WLI (International Geotechnical Societies’ UNESCO Working Party on World Landslide Inventory) (1993) A suggested method for describing the activity of a landslide. Bull Int Ass of Eng Geol 47:53–57

    Article  Google Scholar 

  93. Zêzere JL, Trigo RM, Fragoso M, Oliveira SC, Garcia RAC (2008) Rainfall-triggered landslides in the Lisbon region over 2006 and relationships with the North Atlantic Oscillation. Nat Hazards Earth Syst Sci 8:483–499

    Article  Google Scholar 

  94. Zhang X, Yang F (2004) RClimDex (1.0) user manual. Available at http://cccma.seos.uvic.ca/ETCCDMI/software.shtml

  95. Zhong YQ (1998) Landslide related to rainfall and its forecasting. Chin J Geol Hazard Control 9:81–86

    Google Scholar 

  96. Zingg A (1983) The Ivrea and Strona-Ceneri zones (Southern Alps, Ticino and Northern Italy): a review. Scheizerische Mineralogische und Petrographische Mitteilungen 63:361–392. https://doi.org/10.5169/seals-48742

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Ciampittiello.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ciampittiello, M., Saidi, H., Dresti, C. et al. Landslides along the Lago Maggiore western coast (northern Italy): intense rainfall as trigger or concomitant cause?. Nat Hazards (2021). https://doi.org/10.1007/s11069-021-04626-8

Download citation

Keywords

  • Slope instability
  • Landslides
  • Extreme rainfall events
  • QGIS
  • GLM method