Skip to main content
Log in

A comparative analysis of attabad landslide on january 4, 2010, using two numerical models

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

This study determines the runout behavior (Attabad landslide, Hunza, Pakistan) of one of the biggest landslides in Pakistan's history, along the highest and strategically most important highway of the world. On January 4, 2010, at 08:36 local time, 45 Mm3 of rock mass flowed down the hill slope for 1060 m and fell in Hunza River, thus blocking the river's flow and making an artificial dam. This paper examines the landslide's failure process based on seismic data obtained from a published paper. The average velocity of the slide was found to be 14.32 m/s. To better understand the landslide dynamics and failure phenomena, a numerical simulation was conducted using DAN3D to simulate displaced materials' runout behavior. Simulation results indicate that the slope's failure lasted for 70 s, which is in good agreement with seismic wave recordings of 70 s. The combined frictional–Voellmy model obtained the most accurate results for simulation. Further, to verify the results, another simulation was run using RAMMS debris flow software; it was found that the results of both the software's are in good agreement. It is expected that the selected model and its parameters will help understand similar kind of rock avalanches in the area, which will help concerned agencies improve landslide prediction along Karakoram Highway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

source inversion model applied on Attabad landslides data extracted from a published paper of (Ekström and Stark 2013)

Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

source area along with the main sliding direction. b Longitudinal section of Attabad landslide along with line AB

Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Ali S, Biermanns P, Haider R, Reicherter K (2019) Landslide susceptibility mapping by using a geographic information system (GIS) along the China-Pakistan Economic Corridor (Karakoram Highway). Pakistan Nat Hazards Earth Syst Sci 19:999–1022. https://doi.org/10.5194/nhess-19-999-2019

    Article  Google Scholar 

  • Bao Y, Huang Y, Liu GR, Wang G (2020) Sph simulation of high-volume rapid landslides triggered by earthquakes based on a unified constitutive Model. Part I: Initiation Process and Slope Failure. Int. J. Comput. Methods 17. https://doi.org/10.1142/S0219876218501505

  • Berger C (2010) Debris flow entrainment and sediment transfer processes at the Illgraben catchment. The University of Bern.

  • Berger C, McArdell BW, Schlunegger F (2011) Direct measurement of channel erosion by debris flows. J. Geophys. Res 116. : https://doi.org/10.1029/2010JF001722

  • Butt MJ, Umar M, Qamar R (2013) Landslide dam and subsequent dam-break flood estimation using HEC-RAS model in Northern Pakistan. Nat Hazards 65:241–254. https://doi.org/10.1007/s11069-012-0361-8

    Article  Google Scholar 

  • Cascini L, Cuomo S, Pastor M, Sorbino G (2010) Modeling of Rainfall-Induced Shallow Landslides of the Flow-Type. J Geotech Geoenvironmental Eng 136:85–98. https://doi.org/10.1061/(ASCE)gt.1943-5606.0000182

    Article  Google Scholar 

  • Chen K, Wu J (2018) PT. Eng. Geol. #pagerange#. https://doi.org/10.1016/j.enggeo.2018.04.002

  • Chen TC, Lin ML, Wang KL (2013) NU SC. Geol, Eng. https://doi.org/10.1016/j.enggeo.2013.11.018

    Book  Google Scholar 

  • Christen M, Bühler Y, Bartelt P, Leine R, Glover J, Schweizer A, Graf C, Mcardell BW, Gerber W, Deubelbeiss Y, Feistl T (2012) Integral Hazard Management Using a Unified Software Environment Numerical Simulation Tool “RAMMS.” Congr. Interpraevent pp. 77–86.

  • Cleary PW , Campbell CS (1993) Self-lubrication for long-runout landslides: examination by computer simulation J Geophys Reshttps://doi.org/10.1029/93jb02380

  • D’Agostino MC, V., (2008) Comparison Between FLO-2D And RAMMS In Debris-flow Modelling: A Case Study In The Dolomites. WIT Trans Eng Sci 60:10. https://doi.org/10.2495/DEB080201

    Article  Google Scholar 

  • Dai FC, Lee CF (2002) Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology 42:213–228. https://doi.org/10.1016/S0169-555X(01)00087-3

    Article  Google Scholar 

  • Dai Z, Huang Y, Cheng H, Xu Q (2014) State Key Laboratory of Geohazard Prevention and Geoenvironment Protection. Eng. Geol, Chengdu SC. https://doi.org/10.1016/j.enggeo.2014.03.018

    Book  Google Scholar 

  • Deubelbeiss Y, Graf C (2013) Two different starting conditions in numerical debris flow models - Case study at Dorfbach, Randa (Valais, Switzerland), in: Graf, C. (Red.) 2013: Matter-Tal - Ein Tal in Bewegung. Publikation Zur Jahrestagung Der Schweizerischen Geomorphologi-Schen Gesellschaft 29. Juni - 1. Juli 2011. pp. 125–138.

  • Ekström G, Stark CP (2013) Simple scaling of catastrophic landslide dynamics. Science (80-). 339:1416–1419. https://doi.org/10.1126/science.1232887

    Article  Google Scholar 

  • Evans SG, Hungr O, Clague JJ (2001) Dynamics of the 1984 rock avalanche and associated distal debris ¯ ow on Mount Cayley, British Columbia Canada; implications for landslide hazard assessment on dissected volcanoes. Eng Geology 61:29–51

    Article  Google Scholar 

  • Frank F, McArdell B, H.C., and V.A., (2015) The importance of entrainment and bulking on debris flow runout modeling; examples from Swiss Alps. Nat Hazards Earth Syst Sci 15:2569–2583. https://doi.org/10.5194/nhess-15-2569-2015

    Article  Google Scholar 

  • Goudie AS, Brunsden D, Collins DN, Derbyshire E, Ferguson RI, Hashnet Z, Jones DKC, Per-Rott FA, Said M, Waters RS, Whalley WB (1984) The geomorphology of the Hunza Valley, Karakoram mountains, Pakistan. Int Karakoram-Project 2:359–411

    Google Scholar 

  • Hayat T, Engineering N (2010) Attabad Landslide - Dam disaster in Pakistan ISSMGE Bulletin : Volume 4, Issue 3 Attabad Landslide- Dam Disaster in Pakistan 2010. ISSMGE Bull 4:20–31

    Google Scholar 

  • Hungr O (1995) A model for the runout analysis of rapid flow slides, debris flows, and avalanches. Can Geotech J 32:610–623. https://doi.org/10.1139/t95-063

    Article  Google Scholar 

  • Hungr O, Evans SG (2004) Entrainment of debris in rock avalanches: An analysis of a long runout mechanism. Bull Geol Soc Am 116:1240–1252. https://doi.org/10.1130/B25362.1

    Article  Google Scholar 

  • Hussain SH, Awan AA (2009) Causative mechanisms of terrain movement in Hunza Valley.

  • Hussin HY, Quan Luna B, Van Westen CJ, Christen M, Malet JP, Van Asch TWJ (2012) Parameterization of a numerical 2-D debris flow model with entrainment: A case study of the Faucon catchment, Southern French Alps. Nat Hazards Earth Syst Sci 12:3075–3090. https://doi.org/10.5194/nhess-12-3075-2012

    Article  Google Scholar 

  • Hutter K, Koch T, Pluüss C, Savage SB (1995) The dynamics of avalanches of granular materials from initiation to runout. Part II Experiments Acta Mech 109:127–165. https://doi.org/10.1007/BF01176820

    Article  Google Scholar 

  • Jiao Y, Zhang H, Tang H, Zhang X, Cof A, Tian H (2014) Simulating the process of reservoir-impoundment-induced landslide using the extended DDA method. Eng Geology 182:37–48. https://doi.org/10.1016/j.enggeo.2014.08.016

    Article  Google Scholar 

  • Johnson AM (1984) Debris flow. In: Brunsden D, Prior DB (eds) Slope Instability. John Wiley and Sons, New York, pp 257–361

  • Kelfoun K, Druitt TH (2005) Numerical modeling of the emplacement of Socompa rock avalanche. Chile J Geophys Res Solid Earth 110:1–13. https://doi.org/10.1029/2005JB003758

    Article  Google Scholar 

  • Li X, He S, Luo Y, Wu Y (2012) Simulation of the sliding process of Donghekou landslide triggered by the Wenchuan earthquake using a distinct element method. Environ Earth Sci 65:1049–1054. https://doi.org/10.1007/s12665-011-0953-8

    Article  Google Scholar 

  • Lin C, Lin M (2015) Evolution of the large landslide induced by Typhoon Morakot : A case study in the Butangbunasi River, southern Taiwan, using the discrete element method. Eng Geol 197:172–187. https://doi.org/10.1016/j.enggeo.2015.08.022

    Article  Google Scholar 

  • Luna BQ , Cepeda J , Stumpf A, Westen CJV , Malet JP Asch TWJV (2012) Application of a Monte Carlo method for modeling debris flow runout 14 13718

  • Mao Z, Liu G, Huang Y, Bao Y (2019) A conservative and consistent Lagrangian gradient smoothing method for earthquake-induced landslide simulation. Eng Geol 260:105226. https://doi.org/10.1016/j.enggeo.2019.105226

    Article  Google Scholar 

  • McDougall S, Hungr O (2005) Dynamic modelling of entrainment in rapid landslides. Can Geotech J 42:1437–1448. https://doi.org/10.1139/t05-064

    Article  Google Scholar 

  • Pastor M, Haddad B, Sorbino G, Cuomo S, Drempetic V (2009) A depth-integrated, coupled SPH model for flow-like landslides and related phenomena. Int J Numer Anal Meth Geomech 33:143–172. https://doi.org/10.1002/nag.705

    Article  Google Scholar 

  • Petley DN, Rosser NJ, Karim D, Wali S, Ali N, Nasab N, Shaban K (2010) Non-seismic landslide hazards along the Himalayan Arc. Geol. Act. – Proceedings of 11th IAEG Congress pp 143–152.

  • Koo RCH, Kwan JSH, Lam C, Goodwin GR, Choi CE, Ng CWW, Yiu J, Ho KKS, Pun WK (2016) Back-analysis of geophysical flows using three-dimensional runout model. Canadian Geotech J. 55(8):1081–1094. https://doi.org/10.1139/cgj-2016-0578

    Article  Google Scholar 

  • Rickenmann D, Laigle D, McArdell BW, Hübl J (2006) Comparison of 2D debris-flow simulation models with field events. Comput Geosci 10:241–264. https://doi.org/10.1007/s10596-005-9021-3

    Article  Google Scholar 

  • Salm B (1993) Flow, flow transition and runout distances of flowing avalanches. Ann Glaciol 18:221–226

    Article  Google Scholar 

  • Salm BW, Burkhard A, Gubler H (1990) Berechnung von Fliesslawinen: eine Anleitung für Praktiker mit Beispielen.

  • Schürch P, Densmore AL, Rosser NJ, McArdell BW (2011) Dynamic controls on erosion and deposition on debris-flow fans. Geology 39:827–830. https://doi.org/10.13140/RG.2.2.17528.44807

    Article  Google Scholar 

  • Shah FH, Ali A, Baig MN (2013) Taming the Monster - Attabad Landslide Dam. J Environ Treatment Tech 1:46–55

    Google Scholar 

  • Valley H, Calligaris C, Departement G, Comi M, Tariq S, Bashir F, Karim D, Assistance FH, Khan H (2010) Executive summary on Attabad landslide survey in Hunza 7–17 April 2010 Short introduction Background of potential glacial lake outburst floods in the Hunza Valley pp 1–20.

  • Xing A, Wang G, Yin Y, Tang C, Xu Z, Li W (2016) Investigation and dynamic analysis of a catastrophic rock avalanche on September 23, 1991, Zhaotong, China. Landslides 13:1035–1047. https://doi.org/10.1007/s10346-015-0617-y

    Article  Google Scholar 

  • Xing A, Yuan X, Xu Q, Zhao Q, Huang H, Cheng Q (2017) Characteristics and numerical runout modelling of a catastrophic rock avalanche triggered by the Wenchuan earthquake in the Wenjia valley, Mianzhu, Sichuan, China. Landslides 14:83–98. https://doi.org/10.1007/s10346-016-0707-5

    Article  Google Scholar 

  • Xing AG, Wang G, Yin YP, Jiang Y, Wang GZ, Yang SY, Dai DR, Zhu YQ, Dai JA (2014) Dynamic analysis and field investigation of a fluidized landslide in Guanling, Guizhou. China Eng Geol 181:1–14. https://doi.org/10.1016/j.enggeo.2014.07.022

    Article  Google Scholar 

  • Zhu Y, Xu S, Zhuang Y, Dai X, Lv G, Xing A (2019) Characteristics and runout behaviour of the disastrous August 28 2017 rock avalanche in Nayong, Guizhou. China Eng Geol 259:105154. https://doi.org/10.1016/j.enggeo.2019.105154

    Article  Google Scholar 

  • Zhuang Y, Xing A, Cheng Q, Li D, Zhao C, Xu C (2019)Characteristics and numerical modeling of a catastrophic loess flow slide triggered by the 2013 Minxian-Zhangxian earthquake in Yongguang villageBull. Eng. Geol. Environ Minxian, Gansu, Chinahttps://doi.org/10.1007/s10064-019-01542-x

  • Zhuang Y, Yin Y, Xing A, Jin K (2020) Combined numerical investigation of the yigong rock slide-debris avalanche and subsequent dam-break flood propagation in tibet, china. Landslides 17:2217–2229. https://doi.org/10.1007/s10346-020-01449-9

    Article  Google Scholar 

  • Zimmermann F, McArdell BW, Rickli C, Scheidl C (2020) 2D Runout Modelling of Hillslope Debris Flows, Based on Well-Documented Events in Switzerland. Geosciences 10(2):70

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (No. 41530639) and Guizhou Science and Technology Project ([2017]5402 and [2017]2814). We are grateful to Prof. O. Hungr for supplying a copy of the DAN3D software.

Author information

Authors and Affiliations

Authors

Contributions

Hasnain Gardezi designed the research, did the DAN3D simulation, and wrote the paper; Muhammad Bilal did the RAMMS simulation; Qiangong Cheng, Aiguo Xing, and Yu Zhuang performed the research, modified the manuscript, and analyzed the results; Tahir Masood provided the information of the Attabad Landslide.

Corresponding author

Correspondence to Aiguo Xing.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gardezi, H., Bilal, M., Cheng, Q. et al. A comparative analysis of attabad landslide on january 4, 2010, using two numerical models. Nat Hazards 107, 519–538 (2021). https://doi.org/10.1007/s11069-021-04593-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-021-04593-0

Keywords

Navigation