Decision support for infrastructure planning: a comprehensive location–allocation model for fire station in complex urban system

Abstract

Infrastructures are the most important aspect of any urban system. Properly planned infrastructures are critical for ensuring services and protecting an urban system from disasters. The fire resilience of an urban system depends on the number and location of it’s fire stations. To support urban resilience through properly planned critical infrastructures, this research attempted to develop a decision support model to solve the location–allocation problem of fire stations in complex urban settings. The developed model combined geographical information system, multi-criteria analysis, and set cover algorithm to utilize global knowledge and local experience. The findings of the research found aligned with other observations. Results revealed that systematic planning can significantly increase the level of outputs from the same input and absorb local constraints with minimum compromise in development goals. The importance of expert opinion in decision making was found very critical. Integration of science and local experience, and involvement of practitioners, decision makers, and scholars could significantly increase the problem solving of the complex world.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Ahmed I (2014) Factors in building resilience in urban slums of Dhaka, Bangladesh. Procedia Econ Finance 18:745–753. https://doi.org/10.1016/S2212-5671(14)00998-8

    Article  Google Scholar 

  2. Alam MJ, Baroi GN (2004) Fire hazard categorization and risk assessment for Dhaka City in GIS framework. J Civ Eng 32(1):35–45

    Google Scholar 

  3. American Planning Association (APA) (2006) Planning and urban design standards. Wiley, Hoboken

    Google Scholar 

  4. Ansary MA, Noor MA, Rashid MA (2004) Site amplification characteristics of Dhaka City. J Civ Eng (IEB) 32(1):1–6

    Google Scholar 

  5. Arogundade OT, Akinwale AT, Adekoya AF, Awe Oludare G (2005) A 0–1 model for fire and emergency service facility location selection: a case study in Nigeria. J Theor Appl Inf Technol 9:50–59

    Google Scholar 

  6. Bach L (1980) Locational models for systems of private and public facilities based on concepts of accessibility and access opportunity. Environ Plan A 12(3):301–320. https://doi.org/10.1068/a120301

    Article  Google Scholar 

  7. Badri MA (1999) Combining the analytic hierarchy process and goal programming for global facility location–allocation problem. Int J Prod Econ 62(3):237–248. https://doi.org/10.1016/S0925-5273(98)00249-7

    Article  Google Scholar 

  8. Badri MA, Mortagy AK, Alsayed CA (1998) A multi-objective model for locating fire stations. Eur J Oper Res 110(2):243–260. https://doi.org/10.1016/S0377-2217(97)00247-6

    Article  Google Scholar 

  9. Barr RC, Caputo AP (2003) Planning fire station locations in organizing for fire and rescue services. National Fire Protection Agency, Quincy

    Google Scholar 

  10. Blum EH (1971) Urban fire protection: studies of the operations of the New York City Fire Department. The New York City RAND Institute, New York

    Google Scholar 

  11. Boin A, McConnell A (2007) Preparing for critical infrastructure breakdowns: the limits of crisis management and the need for resilience. J Conting Crisis Manag 15(1):50–59. https://doi.org/10.1111/j.1468-5973.2007.00504.x

    Article  Google Scholar 

  12. Bolouri S, Vafaeinejad A, Alesheikh AA, Aghamohammadi H (2018) The ordered capacitated multi-objective location–allocation problem for fire stations using spatial optimization. ISPRS Int J Geo-Inf 7(2):44

    Article  Google Scholar 

  13. Borodin A, Nielsen MN, Rackoff C (2003) (Incremental) Priority algorithms. Algorithmica 37(4):295–326

    Article  Google Scholar 

  14. Chevalier P, Thomas I, Geraets D, Goetghebeur E, Janssens O, Peeters D, Plastria F (2012) Locating fire stations: an integrated approach for Belgium. Socio-Econ Plan Sci 46(2):173–182. https://doi.org/10.1016/j.seps.2012.02.003

    Article  Google Scholar 

  15. Chowdhury MS (2014) Sustainable transportation systems for Dhaka Metropolitan City: issues and opportunities. In: International conference on sustainable infrastructure, American Society of Engineers, California, pp 448–459. https://doi.org/10.1061/9780784478745.040

  16. Chung RM (1996) January 17, 1995 Hyogoken–Nanbu (Kobe) earthquake: performance of structures, lifelines, and fire protection systems (NIST SP 901). US Department of Commerce, Technology Administration, National Institute of Standards and Technology

  17. Chvatal V (1979) A greedy heuristic for the set-covering problem. Math Oper Res 4(3):233–235

    Article  Google Scholar 

  18. Combs TE, Moore JT (2004) A hybrid tabu search/set partitioning approach to tanker crew scheduling. Mil Oper Res 1:43–56

    Article  Google Scholar 

  19. Cooper L (1963) Location–allocation problems. Oper Res 11(3):331–343. https://doi.org/10.1287/opre.11.3.331

    Article  Google Scholar 

  20. Elkarmi F, Mustafa I (1993) Increasing the utilization of solar energy technologies (SET) in Jordan: analytic hierarchy process. Energy Policy 21(9):978–984. https://doi.org/10.1016/0301-4215(93)90186-J

    Article  Google Scholar 

  21. Federal Emergency Management Agency (FEMA) (2006) HAZUS-MH MR2: technical manual. Federal Emergency Management Agency, Washington, DC

    Google Scholar 

  22. Frankel AD, Petersen MD, Mueller CS, Haller KM, Wheeler RL, Leyendecker EV, Wesson RL, Harmsen SC, Cramer CH, Perkins DM, Rukstales KS (2002) Documentation for the 2002 update of the national seismic hazard maps. US Geological Survey Open-File Report

  23. Garey MR, Johnson DS (1979) Computers and intractability, vol 174. Freeman, San Francisco

    Google Scholar 

  24. Garfinkel RS, Nemhauser GL (1970) Optimal political districting by implicit enumeration techniques. Manag Sci 16(8):B-495

    Article  Google Scholar 

  25. Goodman WI, Freund EC (1968) Principles and practice of urban planning. International City Managers’ Association, Washington, DC

    Google Scholar 

  26. Guild RD, Rollin JE (1972) A fire station placement model. Fire Technol 8(1):33–43. https://doi.org/10.1007/BF02590587

    Article  Google Scholar 

  27. Habib KMN, Alam JB (2003) Effects of alternative transportation options on congestion and air pollution in Dhaka City. J Civ Eng 31(2):165–175

    Google Scholar 

  28. Habibi K, Lotfi S, Koohsari MJ (2008) Spatial analysis of urban fire station locations by integrating AHP model and IO logic using GIS (a case study of zone 6 of Tehran). J Appl Sci 8(19):3302–3315. https://doi.org/10.3923/jas.2008.3302.3315

    Article  Google Scholar 

  29. Hamada M, Wakamatsu K (1992) Liquefaction-induced ground deformations during the 1923 Kanto Earthquake. In: Case studies liquefaction and lifeline performance during past earthquakes: Japanese case studies. US National Center for Earthquake Engineering Research (NCEER), p 50

  30. Hogg JM (1968) The siting of fire stations. J Oper Res Soc 19(3):275–287. https://doi.org/10.1057/jors.1968.71

    Article  Google Scholar 

  31. Ignall EJ, Kolesar P, Swersey AJ, Walker WE, Blum EH, Carter G, Bishop H (1975) Improving the deployment of New York City fire companies. Interfaces 2(2):48–61. https://doi.org/10.1287/inte.5.2pt2.48

    Article  Google Scholar 

  32. Islam MM, Adri N (2008) Fire hazard management of Dhaka City: addressing issues relating to institutional capacity and public perception. Jahangirnagar Plan Rev 6:57–67

    Google Scholar 

  33. Johnson R (2008) GIS technology and applications for the fire services. In: Zlatanova S, Li J (eds) Geospatial information technology for emergency response. Taylor & Francis Ltd, London, pp 351–372

    Google Scholar 

  34. Khan SM, Hoque MS (2013) Traffic flow interruptions in Dhaka City: is smooth traffic flow possible? J Pres Univ 2(2):46–54

    Google Scholar 

  35. Khan T, Islam MR (2013) Estimating costs of traffic congestion in Dhaka City. Int J Eng Sci Innov Technol 2(3):281–289

    Google Scholar 

  36. Kolesar P, Blum EH (1973) Square root laws for fire engine response distances. Manag Sci 19(12):1368–1378. https://doi.org/10.1287/mnsc.19.12.1368

    Article  Google Scholar 

  37. Lee S, Davidson R, Ohnishi N, Scawthorn C (2008) Fire following earthquake—reviewing the state-of-the-art of modeling. Earthq Spectra 24(4):933–967. https://doi.org/10.1193/1.2977493

    Article  Google Scholar 

  38. Liang S, Wey WM (2013) Resource allocation and uncertainty in transportation infrastructure planning: a study of highway improvement program in Taiwan. Habitat Int 39:128–136. https://doi.org/10.1016/j.habitatint.2012.11.004

    Article  Google Scholar 

  39. Liu N, Huang B, Chandramouli M (2006) Optimal siting of fire stations using GIS and ANT algorithm. J Comput Civ Eng. https://doi.org/10.1061/(ASCE)0887-3801(2006)20:5(361)

    Article  Google Scholar 

  40. Magar CS (2010) Seven principles for interconnectivity: achieving sustainability in design and construction. In: Clark W (ed) Sustainable communities design handbook. Butterworth-Heinemann, Boston, pp 165–179

    Google Scholar 

  41. Min H, Melachrinoudis E, Wu X (1997) Dynamic expansion and location of an airport: a multiple objective approach. Transp Res Part A Policy Pract 31(5):403–417. https://doi.org/10.1016/S0965-8564(96)00037-7

    Article  Google Scholar 

  42. Monarchi DE, Hendrick TE, Plane DR (1977) Simulation for fire department deployment policy analysis. Decis Sci 8(1):211–227. https://doi.org/10.1111/j.1540-5915.1977.tb01078.x

    Article  Google Scholar 

  43. Moteff J, Parfomak P (2004) Critical infrastructure and key assets: definition and identification. CRS Report for Congress, Washington, DC

    Google Scholar 

  44. Mousalli MS, Fredrick HB, Sanli HI, Al-Tamimitoward FM (1999) An optimal deployment of fire stations in Riyadh, Saudi Arabia. J King Abdulaziz Univ 11(1):227–242

    Article  Google Scholar 

  45. Murray AT (2013) Optimising the spatial location of urban fire stations. Fire Saf J 62:64–71. https://doi.org/10.1016/j.firesaf.2013.03.002

    Article  Google Scholar 

  46. Murray AT, Grubesic TH (eds) (2007) Overview of reliability and vulnerability in critical infrastructure. In: Critical infrastructure. Advances in spatial science. Springer, Berlin, Heidelberg

    Google Scholar 

  47. Murray AT, Tong D (2009) GIS and spatial analysis in the media. Appl Geogr 29(2):250–259

    Article  Google Scholar 

  48. Navitas P (2014) Improving resilience against urban fire hazards through environmental design in dense urban areas in Surabaya, Indonesia. Procedia Soc Behav Sci 135:178–183. https://doi.org/10.1016/j.sbspro.2014.07.344

    Article  Google Scholar 

  49. Neely A (1998) Three modes of measurement: theory and practice. Int J Bus Perform Manag 1(1):47–64

    Article  Google Scholar 

  50. Nisanci R (2010) GIS based fire analysis and production of fire-risk maps: the Trabzon experience. Sci Res Essays 5(9):970–977

    Google Scholar 

  51. Oh JY, Hessami A, Yang HJ (2019) Minimizing response time with optimal fire station allocation. Stud Eng Technol 6(1):47–58

    Article  Google Scholar 

  52. Olympia Fire Department (OFD) (2016) Hazard identification and vulnerability analysis. Olympia Fire Department, Olympia

    Google Scholar 

  53. Ontario (2004) Public fire safety guidelines. The office of the Fire Marshal, Ontario. http://www.ofm.gov.on.ca/english/fireprotection/munguide/04-87-13.asp. Accessed 19 July 2016

  54. Plane DR, Hendrick TE (1977) Mathematical programming and the location of fire companies for the Denver fire department. Oper Res 25(4):563–578. https://doi.org/10.1287/opre.25.4.563

    Article  Google Scholar 

  55. Quadir F, Al Ameen MF, Momen S (2014) Visualization and queuing analysis of spatio-temporal traffic data. In: The 17th international conference on computer and information technology (ICCIT), Dhaka, pp 223–228

  56. Rahman M (2008) Future mass rapid transit in Dhaka City: options, issues and realities. Jahangirnagar Plan Rev 6(1):69–81

    Google Scholar 

  57. Rahman N, Ansary MA, Islam I (2015) GIS based mapping of vulnerability to earthquake and fire hazard in Dhaka City, Bangladesh. Int J Disaster Risk Reduct 13:291–300. https://doi.org/10.1016/j.ijdrr.2015.07.003

    Article  Google Scholar 

  58. Rahmawati D, Pamungkas A, Aulia BU, Larasati KD, Rahadyan GA, Dito AH (2016) Participatory mapping for urban fire risk reduction in high-density urban settlement. Procedia Soc Behav Sci 227:395–401. https://doi.org/10.1016/j.sbspro.2016.06.091

    Article  Google Scholar 

  59. Ramanathan R (2001) A note on the use of the analytic hierarchy process for environmental impact assessment. J Environ Manag 63(1):27–35. https://doi.org/10.1006/jema.2001.0455

    Article  Google Scholar 

  60. Saaty TL (1977) A scaling method for priorities in hierarchical structures. J Math Psychol 15(3):234–281. https://doi.org/10.1016/0022-2496(77)90033-5

    Article  Google Scholar 

  61. Saaty TL (1980) The analytic hierarchy process. McGraw-Hill, New York

    Google Scholar 

  62. Saaty TL (1990) Multicriteria decision making: the analytic hierarchy process. RWS Publications, Pittsburgh

    Google Scholar 

  63. Saaty TL (2006) Fundamentals of decision making and priority theory with the analytical hierarchy process. RWS Publications, Pittsburgh

    Google Scholar 

  64. Saaty TL (2012) Decision making for leaders: the analytic hierarchy process for decisions in a complex world, third revised edition. RWS Publications, Pittsburgh. http://deltarevision.com/2002_docs/2002OFR-02-420.pdf. Accessed 26 Feb 2017

  65. Sarkis J, Sundarraj RP (2006) Evaluation of enterprise information technologies: a decision model for high-level consideration of strategic and operational issues. IEEE Trans Syst Man Cybern Part C 36(2):260–273. https://doi.org/10.1109/TSMCC.2004.843245

    Article  Google Scholar 

  66. Sayeeduzzaman M, Islam MA (1992) A fire hazard assessment model and fire hazard zones in Dhaka Statistical Metropolitan Area. Orient Geogr 36(1):3–23

    Google Scholar 

  67. Scawthorn CR (2008) The shakeout scenario supplemental study: fire following earthquake. SPA Risk LLC, Berkeley

    Google Scholar 

  68. Scawthorn C, Eidinger JM, Schiff A (eds) (2005) Fire following earthquake. ASCE Publications, Reston

    Google Scholar 

  69. Scawthorn C, O’rourke TD, Blackburn FT (2006) The 1906 San Francisco earthquake and fire—enduring lessons for fire protection and water supply. Earthq Spectra 22(2_suppl):135–158

    Article  Google Scholar 

  70. Schilling DA, Revelle C, Cohon J, Elzinga DJ (1980) Some models for fire protection locational decisions. Eur J Oper Res 5(1):1–7. https://doi.org/10.1016/0377-2217(80)90067-3

    Article  Google Scholar 

  71. Schniederjans MJ, Garvin T (1997) Using the analytic hierarchy process and multi-objective programming for the selection of cost drivers in activity-based costing. Eur J Oper Res 100(1):72–80. https://doi.org/10.1016/S0377-2217(96)00302-5

    Article  Google Scholar 

  72. Schreuder JA (1981) Application of a location model to fire stations in Rotterdam. Eur J Oper Res 6(2):212–219. https://doi.org/10.1016/0377-2217(81)90210-1

    Article  Google Scholar 

  73. Soho DM (2007) What is “fire hazard”? Department of Forestry and Fire Protection, Sacramento California. http://ceres.ca.gov/foreststeward/html/firehazard.html. Accessed 27 Oct 2016

  74. Steele W, Hussey K, Dovers S (2017) What’s critical about critical infrastructure? Urban Policy Res 35(1):74–86. https://doi.org/10.1080/08111146.2017.1282857

    Article  Google Scholar 

  75. Tali JA, Malik MM, Divya S, Nusrath A, Mahalingam B (2017) Location–allocation model applied to urban public services: spatial analysis of fire stations in Mysore urban area Karnataka, India. Int J Adv Res Dev 2(5):795–801

    Google Scholar 

  76. Tang CS, Zhou S (2012) Research advances in environmentally and socially sustainable operations. Eur J Oper Res 223(3):585–594. https://doi.org/10.1016/j.ejor.2012.07.030

    Article  Google Scholar 

  77. Tillander K (2004) Utilisation of statistics to assess fire risks in buildings. PhD Dissertation, Helsinki University of Technology

  78. Toregas C, Swain R, ReVelle C, Bergman L (1971) The location of emergency service facilities. Oper Res 19(6):1363–1373. https://doi.org/10.1287/opre.19.6.1363

    Article  Google Scholar 

  79. Toronto Fire Service (TSF) (2005) Annual Report Toronto: Toronto Fire Services Division. http://www.toronto.ca/fire/annual_report/pdf/tfs_2005_annual_report.pdf. Accessed 20 July 2010

  80. Uddin MS, Ahmad MM, Warnitchai P (2018) Surge dynamics of disaster displaced populations in temporary urban shelters: future challenges and management issues. Nat Hazards 94(1):201–225

    Article  Google Scholar 

  81. Uddin MS, Routray JK, Warnitchai P (2019) Systems thinking approach for resilient critical infrastructures in urban disaster management and sustainable development. In: Noroozinejad Farsangi E, Takewaki I, Yang T, Astaneh-Asl A, Gardoni P (eds) Resilient structures and infrastructure. Springer, Singapore

    Google Scholar 

  82. Weiss EN, Rao VR (1987) AHP design issues for large-scale systems. Decis Sci 18(1):43–61. https://doi.org/10.1111/j.1540-5915.1987.tb01502.x

    Article  Google Scholar 

  83. Wismadi A (2015) Equity-based resource allocation for infrastructure development. PhD Dissertation, University of Twente

  84. Yan Y, Qingsheng G, Xinming T (2005) Gradual optimization of urban fire station locations based on geographical network model. In: Proceedings of international symposium on spatio-temporal modeling, spatial reasoning, analysis, data mining and data fusion, Peking University, China

  85. Yang L, Jones BF, Yang SH (2007) A fuzzy multi-objective programming for optimization of fire station locations through genetic algorithms. Eur J Oper Res 181(2):903–915. https://doi.org/10.1016/j.ejor.2006.07.003

    Article  Google Scholar 

  86. Zahedi F (1986) The analytic hierarchy process—a survey of the method and its applications. Interfaces 16(4):96–108. https://doi.org/10.1287/inte.16.4.96

    Article  Google Scholar 

  87. Zhao S (2010) GisFFE—an integrated software system for the dynamic simulation of fires following an earthquake based on GIS. Fire Saf J 45(2):83–97. https://doi.org/10.1016/j.firesaf.2009.11.001

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Md Shahab Uddin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Uddin, M.S., Warnitchai, P. Decision support for infrastructure planning: a comprehensive location–allocation model for fire station in complex urban system. Nat Hazards 102, 1475–1496 (2020). https://doi.org/10.1007/s11069-020-03981-2

Download citation

Keywords

  • Critical infrastructure
  • Fire station
  • Location–allocation problem
  • Multi-criteria
  • Decision support
  • Urban sustainability