A dynamic stability analysis for the Olinalá landslide, northeastern Mexico

Abstract

We have evaluated slope stability conditions considering different triggering conditions for the Olinalá landslide, a paleo-landslide located in the northern front of the Sierra Madre Oriental, northeastern Mexico. Models included assessment of the influence of both aseismic (suggesting different groundwater levels) and a strong earthquake shaking scenario. Results suggest the Olinalá landslide is relatively stable even considering a fully-saturated hydrological stage through the slope (e.g., after the impact of major hurricanes), a typical situation in the study area. Considering these circumstances, there is no evidence of a reactivation of the landslide after the impact of hurricanes in the region. Conversely, hazardous scenarios result after evaluate a combined influence of moderate seismicity and extreme hydrometeorological conditions. This study suggests that some geomorphological features observed in northeastern Mexico are unfeasible without considering the effect of earthquakes. Our approach could model the behavior of pseudostable old landslides through the region, in the face of future reactivations and risk situations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Adapted from Chapa Guerrero (1993)

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

adapted from Chapa Guerrero 1993). Main features of the landslide are defined (scarp, deposit zone and toe). Colors represent the different homogeneous zones used in the stability analysis. Landslide boundary is depicted as a dashed line. Groundwater level is marked as the blue line. Residential zone refers to the region with the greatest amount of constructions and infrastructure over the landslide

Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Abramson LW, Lee TS, Sharma S, Boyce GM (2001) Slope stability and stabilization methods, 2nd edn. Wiley, London

    Google Scholar 

  2. Alcántara-Ayala I (2002) Geomorphology, natural hazards, vulnerability and prevention of natural disasters in developing countries. Geomorphology 47:107–124

    Article  Google Scholar 

  3. Aranda-Gómez JJ, Housh TB, Luhr JF, Henry CD, Becker T, Chávez-Cabello G (2005) Reactivation of the San Marcos fault during mid to late Tertiary extension, Chihuahua, Mexico. In: Anderson TH, Nourse JA, McKee JW, Steiner MB (eds) The Mojave-Sonora megashear hypothesis: development, assessment, and alternatives. Geological Society of America Special Paper 393, pp 509–521

  4. Bird JF, Bommer J (2004) Earthquake losses due to ground failure. Eng Geol 75:147–179

    Article  Google Scholar 

  5. Casagli N, Cigna F, Bianchini S, Hölbling D, Füreder P, Righini G, Del Conte S, Friedl B, Schneiderbauer S, Iasio C, Vlcko J, Greif V, Proske H, Granica K, Falco S, Lozzi S, Mora O, Arnaud A, Novali F, Bianchi M (2016) Landslide mapping and monitoring by using radar and optical remote sensing: examples from the EC-FP7 project SAFER. Remote Sens Appl: Soc Environ 4:92–108

    Google Scholar 

  6. Cascini L, Fornaro G, Peduto D (2010) Advanced low- and full-resolution DInSAR map generation for slow-moving landslide analysis at different scales. Eng Geol 112:29–42

    Article  Google Scholar 

  7. Carrara A, Guzzetti F, Cardinali M, Reichenbach P (1999) Use of GIS technology in the prediction and monitoring of landslide hazard. Nat Hazards 20:117–135

    Article  Google Scholar 

  8. Chapa Guerrero JR (1993) Massenbewegungen an steilhängen der Sierra Madre Oriental im grossraum Monterrey, Mexiko. Dissertation, RWTH Aachen University, Germany

  9. Chávez-Cabello G, Aranda-Gómez JJ, Molina-Garza RS, Cossío-Torres T, Arvizu-Gutiérrez IR, González-Naranjo GA (2005) La falla de San Marcos: una estructura jurásica de basamento multirreactivada del noreste de México. Bol Soc Geol Mex 57:27–52

    Article  Google Scholar 

  10. CONAGUA (2010) Reseña del huracán "Alex" del Oceáno Atlántico. Coordinación General del Servicio Meteorológico Nacional, 13

  11. CONAGUA (2012) Base de datos de ciclones tropicales que impactaron a México de 1970 a 2011. Coordinación General del Servicio Meteorológico Nacional, 7

  12. CONAGUA (2018) Actualización de la disponibilidad media anual de agua en el acuífero Área Metropolitana de Monterrey (1906), Estado de Nuevo León. Diario Oficial de la Federación, 37

  13. CONAGUA (2019) Weather information (online): https://smn.cna.gob.mx/es/climatologia/informacion-climatologica. Last access Oct 2019

  14. Corominas J, Moya J, Ledesma A, Lloret A, Gili JA (2005) Prediction of ground displacements and velocities from groundwater level changes at the Vallcebre landslide (Eastern Pyrenees, Spain). Landslides 2:83–96

    Article  Google Scholar 

  15. Corominas J, van Westen C, Frattini P, Cascini L, Malet JP, Fotopoulou S, Catani F, Van Den Eeckhaut M, Mavrouli O, Agliardi F, Pitilakis K, Winter MG, Pastor M, Ferlisi S, Tofani V, Hervás J, Smith JT (2014) Recommendations for the quantitative analysis of landslide risk. Bull Eng Geol Environ 73(2):209–263

    Google Scholar 

  16. Dai FC, Lee CF, Ngai YY (2002) Landslide risk assessment and management: an overview. Eng Geol 64:65–87

    Article  Google Scholar 

  17. De León-Gómez H, Masuch-Oesterreich D, Medina-Barrera F, Hellweg F (1998) Investigaciones hidrogeológicas en el Cañón de la Huasteca como contribución al abastecimiento de agua potable de Monterrey, Nuevo León, México. Geogaceta 23:87–90

    Google Scholar 

  18. Deming D (2002) Introduction to hydrogeology. McGraw-Hill, New York, p 468

    Google Scholar 

  19. Densmore AL, Hovius N (2000) Topographic fingerprints of bedrock landslides. Geology 28(4):371–374

    Article  Google Scholar 

  20. Dewitte O, Chung CJ, Demoulin A (2006) Reactivation hazard mapping for ancient landslides in West Belgium. Nat Hazards Earth Syst Sci 6:653–662

    Article  Google Scholar 

  21. Dickinson WR, Lawton T (2001) Carbonaceous to Cretaceous assembly and fragmentation of Mexico. Geol Soc Am Bull 113:1142–1160

    Article  Google Scholar 

  22. Doser DI (1987) The 16 August 1931 Valentine, Texas, earthquake: evidence for normal faulting in west Texas. Bull Seismol Soc Am 77:2005–2017

    Google Scholar 

  23. Doser DI, Rodríguez J (1993) The seismicity of Chihuahua, Mexico, and the 1928 Parral earthquake. Phys Earth Planet Inter 78:97–104

    Article  Google Scholar 

  24. Eguiluz de Antuñano S, Aranda García M, Marret R (2000) Tectónica de la Sierra Madre Oriental. Bol Soc Geol Mex 53:1–26

    Article  Google Scholar 

  25. Fell R, Corominas J, Bonnard C, Cascini L, Leroi E, Savage WZ (2008) Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Eng Geol 102:85–98

    Article  Google Scholar 

  26. Fitz-Díaz E, Lawton TF, Juárez-Arriaga E, Chávez-Cabello G (2018) The Cretaceous-Paleogene Mexican orogen: structure, basin, development, magmatism and tectonics. Earth Sci Rev 183:56–84

    Article  Google Scholar 

  27. Frohlich C, Davis SD (2002) Texas earthquakes. Springer, Berlin, p 277

    Google Scholar 

  28. Galván-Ramírez IN, Montalvo-Arrieta J (2008) The historical seismicity and prediction of ground motion in northeast Mexico. J S Am Earth Sci 25:37–48

    Article  Google Scholar 

  29. García Acosta V, Suárez Reynoso G (1996) Los sismos en la historia de México. Universidad Nacional Autónoma de México, México

    Google Scholar 

  30. Gómez-Arredondo CM, Montalvo-Arrieta J, Iglesias-Mendoza A, Espindola-Castro V (2016) Relocation and seismotectonic interpretation of the seismic swarm of August–December of 2012 in the Linares area, northeastern Mexico. Geofís Int 55(2):95–106

    Google Scholar 

  31. Guzzetti F, Mondini AC, Cardinali M, Fiorucci F, Santangelo M, Chang KT (2012) Landslide inventory maps: new tools for an old problem. Earth Sci Rev 112:42–66

    Article  Google Scholar 

  32. Hancox GT, Perrin ND (2009) Green Lake landslide and other giant and very large postglacial landslides in Fiordland, New Zealand. Quat Sci Rev 28:1020–1036

    Article  Google Scholar 

  33. INEGI (2019) Population data (online): https://www.inegi.org.mx. Last access Oct 2019

  34. Intrieri E, Raspini F, Fumagalli A, Lu P, Del Conte S, Farina P, Allievi J, Ferreti A, Casagli N (2017) The Maoxian landslide as seen from space: detecting precursors of failure with Sentinel-1 data. Landslides 15(1):123–133

    Article  Google Scholar 

  35. Jaimes MA, Niño M, Reinoso E (2013) Una aproximación para la obtención de mapas de desplazamiento traslacional de laderas a nivel regional inducidos por sismos. Rev Ing Sísm 89:1–23

    Google Scholar 

  36. Janbu N (1954) Application of composite slip surface for stability analysis. In: European conference on stability of earth slopes. Stockholm, Sweden

  37. Jáuregui E (2003) Climatology of landfalling hurricanes and tropical storms in Mexico. Atmósfera, 193–204.

  38. Jibson RW, Keefer DK (1993) Analysis of the seismic origin of landslides: examples from the New Madrid seismic zone. Geol Soc Am Bull 105:521–536

    Article  Google Scholar 

  39. Jibson RW, Harp E, Michael A (2000) A method for producing digital probabilistic seismic landslide hazard maps. Eng Geol 58:271–289

    Article  Google Scholar 

  40. Keefer DK (2002) Investigating landslides caused by earthquakes: a historical review. Surv Geophys 23:473–510

    Article  Google Scholar 

  41. Korup O, Densmore AL, Schlunegger F (2010) The role of landslides in mountain range evolution. Geomorphology 120:77–90

    Article  Google Scholar 

  42. Legorreta Paulin G, Bursik M, Lugo-Hubp J, Zamorano Orozco JJ (2010) Effect of pixel size on cartographic representation of shallow and deep-seated landslide, and its collateral effects on the forecasting of landslide by SINMAP and Multiple Logistic Regression landslide models. Phys Chem Earth 35:137–148

    Article  Google Scholar 

  43. Mansour MF, Morgenstern NR, Martin C (2011) Expected damage from displacement of slow-moving slides. Landslides 8:117–131

    Article  Google Scholar 

  44. Martini M, Ortega-Gutiérrez F (2018) Tectono-stratigraphic evolution of eastern Mexico during the break-up of Pangea: a review. Earth Sci Rev 183:38–55

    Article  Google Scholar 

  45. Massey CI, Petley DN, McSaveney MJ (2013) Patterns of movements in reactivated landslides. Eng Geol 159:1–19

    Article  Google Scholar 

  46. McKee JW, Jones NW, Long LE (1984) History of recurrent activity along a major fault in northeastern Mexico. Geology 12(2):103–107

    Article  Google Scholar 

  47. Metternicht G, Hurni L, Gogu R (2005) Remote sensing of landslides: an analysis of the potential contribution to geo-spatial systems for hazard assessment in mountainous environments. Remote Sens Environ 98:284–303

    Article  Google Scholar 

  48. Meunier P, Hovius N, Haines JA (2008) Topographic site effects and the location of earthquake induced landslides. Earth Planet Sci Lett 275:221–232

    Article  Google Scholar 

  49. Molina-Garza RS, Iriondo A (2005) La megacizalla Mojave-Sonora: la hipótesis, la controversia y el estado actual de conocimiento. Bol Soc Geol Mex 57:1–26

    Article  Google Scholar 

  50. Montalvo-Arrieta JC, Chávez-Cabello G, Velasco-Tapia F, Navarro de León I (2010) Causes and effects of landslides in the Monterrey Metropolitan Area, NE Mexico. In: Werner ED, Friedman H (eds) Landslides: causes, types and effects. Nova Science Publishers, New York, pp 72–104

    Google Scholar 

  51. Montalvo-Arrieta JC, Ramos-Zuñiga LG, Navarro de León I, Ramírez-Fernández JA (2011) Una aproximación a la regionalización sísmica del estado de Nuevo León, basada en velocidades de propagación de ondas de corte y geología. Bol Soc Geol Mex 63(2):217–233

    Article  Google Scholar 

  52. Montalvo-Arrieta JC, Sosa-Ramírez RL, Paz-Martínez EG (2015) Relationship between MMI data and ground shakingin the state of Nuevo León. Northeastern Mexico Seismol Res Lett 86(5):1–7

    Google Scholar 

  53. Montalvo-Arrieta JC, Pérez-Campos X, Ramos-Zuñiga LG, Paz-Martínez EG, Salinas-Jasso JA, Navarro de León I, Ramírez-Fernández JA (2018) El Cuchillo seismic sequence of October 2013–July 2014 in the Burgos Basin, northeastern Mexico: hydraulic fracturing or reservoir-induced seismicity? Bull Seismol Soc Am 108(5B):3092–3106

    Article  Google Scholar 

  54. Muehlberger WR, Belcher RC, Goetz LK (1978) Quaternary faulting in Trans-Pecos Texas. Geology 6(6):337–340

    Article  Google Scholar 

  55. Muñiz-Jauregui JA, Hernández-Madrigal VM (2012) Zonificación de procesos de remoción en masa en Puerto Vallarta, Jalisco, mediante combinación de análisis multicriterio y método heurístico. Rev Mex Cien Geol 29:103–114

    Google Scholar 

  56. Murillo-García FG, Steger S, Alcántara-Ayala I (2019) Landslide susceptibility: a statistically-based assessment on a depositional pyroclastic ramp. J Mt Sci 16(3):561–580

    Article  Google Scholar 

  57. Natali SG, Sbar ML (1982) Seismicity in the epicentral region of the 1887 northeastern Sonora earthquake, Mexico. Bull Seismol Soc Am 72:181–196

    Google Scholar 

  58. Normile D (2018) Slippery volcanic soils blamed for deadly landslides during Hokkaido earthquake. Science. https://doi.org/10.1126/science.aav3821

    Article  Google Scholar 

  59. Padilla y Sánchez RJ (1985) Las estructuras de la curvatura de Monterrey, estados de Coahuila, Nuevo León, Zacatecas y San Luis Potosí. Rev Inst de Geol 6:1–20

    Google Scholar 

  60. Palmer J (2017) Creeping earth could hold secret to deadly landslides. Nature 548:384–386

    Article  Google Scholar 

  61. Pankow KL, Pechmann JC (2004) The SEA99 ground-motion predictive relations for extensional tectonic regimes: revisions and a new peak ground velocity relation. Bull Seismol Soc Am 94:341–348

    Article  Google Scholar 

  62. Petley D (2012) Global patterns of loss of life from landslides. Geology 40(10):927–930

    Article  Google Scholar 

  63. Ramos-Zuñiga LG, Montalvo-Arrieta JC, Pérez-Campos X, Váldes-González C (2012a) Seismic characterization of station LNIG as a reference site in northeast Mexico. Geofís Int 51:185–195

    Google Scholar 

  64. Ramos-Zuñiga LG, Medina-Ferrusquía H, Montalvo-Arrieta J (2012b) Patrones de sismicidad en la curvatura de Monterrey, noreste de México. Rev Mex Cienc Geol 29(2):572–589

    Google Scholar 

  65. Rocscience Inc. (2002) Slide 2D limit equilibrium slope stability for soil and rock slopes. User's guide

  66. Ruiz Martínez MA, Werner J (1997) Research into the quaternary sediments and climatic variation in NE Mexico. Quat Int 43(44):145–151

    Article  Google Scholar 

  67. Salinas-Jasso JA, Salinas-Jasso RA, Montalvo-Arrieta JC, Alva-Niño E (2017) Inventario de movimientos en masa en el Sector Sur de la Saliente de Monterrey. Caso de estudio: Cañón Santa Rosa, Nuevo León (Noreste de México). Rev Mex Cienc Geol 34(3):182–198

    Article  Google Scholar 

  68. Salinas-Jasso JA, Montalvo-Arrieta JC, Reinoso-Angulo E (2018) Landslides induced by a low seismic sequence at continental interiors: a case study of the Santa Rosa canyon, northeastern Mexico. Landslides 15:783–795

    Article  Google Scholar 

  69. Salinas-Jasso JA, Montalvo-Arrieta JC, Alva-Niño E, Navarro de León I, Gómez-González JM (2019a) Seismic site effects in the central zone of Monterrey Metropolitan Area (Northeast Mexico) from a geotechnical-multidisciplanary assessment. Bull Eng Geol Environ 78(1):483–495

    Article  Google Scholar 

  70. Salinas-Jasso JA, Ramos-Zuñiga LG, Montalvo-Arrieta JC (2019b) Regional landslide hazard assessment from seismically induced displacements in Monterrey Metropolitan area. Northeastern Mexico Bull Eng Geol Environ 78(2):1127–1141

    Article  Google Scholar 

  71. Sassa K, Fukuoka H, Wang F, Wang G (2007) Landslides induced by a combined effect of earthquake and rainfall. In: Sassa K, Fukuoka H, Wang F, Wang G (eds) Progress in landslides science. Springer, Berlin

    Google Scholar 

  72. Shahabi H, Hashim M (2015) Landslide susceptibility mapping using GIS-based statistical models and remote sensing data in tropical environment. Sci Rep 5:9899

    Article  Google Scholar 

  73. Van Asch ThWJ, Van Beek LPH, Bogaard TA (2007) Problems in predicting the mobility of slow-moving landslides. Eng Geol 91:46–55

    Article  Google Scholar 

  74. Van Den Eeckhaut M, Poesen J, Dewitte O, Demoulin A, De Bo H, Vanmaercke-Gottigny MC (2007) Reactivation of old landslides: lessons learned from a case-study in the Flemish Ardennes. Soil Use Manag 23:200–211

    Article  Google Scholar 

  75. Villaseñor-Reyes CI, Dávila-Harris P, Hernández-Madrigal VM, Figueroa-Miranda S (2018) Deep-seated gravitational slope deformations triggered by extreme rainfall and agricultural practices (eastern Michoacan, Mexico). Landslides 15:1867–1879

    Article  Google Scholar 

  76. Wu G, Cunningham D, Yuan R, Zhou Q, Zeng X, Yang X (2017) Mass-wasting effects induced by the 2015 Gorkha (Nepal) Mw 7.8 earthquake within a large paleo-landslide site adjacent to the Tatopani Border Station, Nepal: implications for future development along the critical Bhote Koshi River valley transport corridor between Nepal and China. Landslides 14:1147–1160

    Article  Google Scholar 

  77. Xie J (1998) Spectral inversion of Lg from earthquakes: a modified method with applications to the 1995, Western Texas earthquake sequence. Bull Seismol Soc Am 88:1525–1537

    Google Scholar 

  78. Yamagishi H, Yamazaki F (2018) Landslides by the 2018 Hokkaido Iburi-Tobu earthquake on September 6. Landslides 15(12):2521–2524

    Article  Google Scholar 

  79. Zúñiga FR, Suárez G, Figueroa-Soto A, Mendoza A (2017) A first-order seismotectonic regionalization of Mexico for seismic hazard and risk estimation. J Seismol 21(6):1295–1322

    Article  Google Scholar 

Download references

Acknowledgements

First author received a scholarship from Consejo Nacional de Ciencia y Tecnología (CONACYT). The authors are grateful to Thomas Glade, Editor in Chief, and two anonymous reviewers for their critical remarks that helped to greatly improve the original manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jorge A. Salinas-Jasso.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Salinas-Jasso, J.A., Montalvo-Arrieta, J.C. & Chapa-Guerrero, J.R. A dynamic stability analysis for the Olinalá landslide, northeastern Mexico. Nat Hazards 102, 1225–1248 (2020). https://doi.org/10.1007/s11069-020-03954-5

Download citation

Keywords

  • Landslide hazard
  • Olinalá landslide
  • Dynamic stability analysis
  • Northeastern Mexico
  • Seismic scenarios