Skip to main content
Log in

Seismic hazard at a triple plate junction: the state of Chiapas (México)

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

The state of Chiapas (SE México) conforms a territory of complex tectonics and high seismic activity. The interaction among the Cocos, North American and Caribbean tectonic plates, as well as the active crustal deformation inside Chiapas, determines a variety of seismogenic sources of distinct characteristics and particular strong ground motion attenuation. This situation makes the assessment of seismic hazard in the region a challenging task. In this work, we follow the methodology of probabilistic seismic hazard analysis, starting from the compilation of an earthquake catalogue, and the definition of seismogenic source-zones based on the particular seismotectonics of the region: plate-subduction-related sources (interface and intraslab zones), active crustal deformation zones and the shear zone between the North American and Caribbean plates formed by the Motagua, Polochic and Ixcán faults. The latter source is modelled in two different configurations: one single source-zone and three distinct ones. We select three ground motion prediction equations (GMPEs) recommended for South and Central America, plus two Mexican ones. We combine the GMPEs with the source-zone models in a logic tree scheme and produce hazard maps in terms of peak ground acceleration and spectral acceleration for the 500-, 1000- and 2500-year return periods, as well as uniform hazard spectra for the towns of Tuxtla Gutiérrez, Tapachula and San Cristóbal. We obtain higher values in comparison with previous seismic hazard studies and particularly much higher than the output of the Prodisis v.2.3 software for seismic design in México. Our results are consistent with those of neighbouring Guatemala obtained in a recent study for Central America.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Álvarez-Gómez JA, Aniel-Quiroga Í, Gutiérrez-Gutiérrez OQ, Larreynaga J, González M, Castro M, Gavidia F, Aguirre-Ayerbe I, González-Riancho P, Carreño E (2013) Tsunami hazard assessment in El Salvador, Central America, from seismic sources through flooding numerical models. Nat Hazards Earth Syst Sci 13(11):2927–2939

    Article  Google Scholar 

  • Ambraseys NN, Adams RD (1996) Large-magnitude Central American earthquakes, 1898–1994. Geophys J Int 127:665–692

    Article  Google Scholar 

  • Ambraseys NN, Adams RD (2001) Seismicity of Central America: a descriptive catalogue, 1898–1995. Imperial College Press, London

    Google Scholar 

  • Andreani L, Gloaguen R (2015) Geomorphic analysis of transient landscapes from the Sierra Madre de Chiapas and Maya Mountains (northern Central America): implications for the North American-Caribbean-Cocos plate boundary. Earth Surf Dyn 3(3):941–1003

    Article  Google Scholar 

  • Andreani L, Pichon XL, Rangin C, Martínez-Reyes J (2008) The southern Mexico block: main boundaries and new estimation for its Quaternary motion. Bull Soc Geol France 179(2):209–223

    Article  Google Scholar 

  • Arango MC, Strasser FO, Bommer JJ, Cepeda JM, Boroschek R, Hernandez DA, Tavera H (2012) An evaluation of the applicability of current ground-motion models to the South and Central America subduction zones. Bull Seismol Soc Am 102:143–168

    Article  Google Scholar 

  • Arroyo D, García D, Ordaz M, Mora MA, Sing SK (2010) Strong Ground-motion relations for Mexican interplate earthquakes. J Seismol 14:769–785

    Article  Google Scholar 

  • Authemayou C, Brocard G, Teyssier C, Simon-Labric T, Guttiérrez A, Chiquín EN, Morán S (2011) The Caribbean-North America-Cocos Triple Junction and the dynamics of the Polochic-Motagua fault systems: pull-up and zipper models. Tectonics. https://doi.org/10.1029/2010tc002814

    Google Scholar 

  • Authemayou C, Brocard G, Teyssier C, Suski B, Cosenza B, Morán-Ical S, González-Véliz CW, Aguilar-Hengstenberg MA, Holliger K (2012) Quaternary seismo-tectonic activity of the Polochic Fault, Guatemala. J Geophys Res. https://doi.org/10.1029/2012jb009444

    Google Scholar 

  • Beauval C, Yepes H, Palacios P, Segovia M, Alvarado A, Font Y, Aguilar J, Troncoso L, Vaca S (2013) An earthquake catalog for seismic hazard assessment in Ecuador. Bull Seismol Soc Am 103:773–786

    Article  Google Scholar 

  • Benito MB, Lindholm C, Camacho E, Climent Á, Marroquín G, Molina E, Rojas W, Escobar JJ, Talavera E, Alvarado GE, Torres Y (2012) A new evaluation of seismic hazard for the Central America region. Bull Seismol Soc Am 102:504–523

    Article  Google Scholar 

  • Bravo H, Rebollar CJ, Uribe A, Jimenez O (2004) Geometry and state of stress of the Wadati-Benioff zone in the Gulf of Tehuantepec, Mexico. J Geophys Res. https://doi.org/10.1029/2003jb002854

    Google Scholar 

  • Burbach GV, Frohlich C, Pennington WD, Matumoto T (1984) Seismicity and tectonics of the subducted Cocos plate. J Geophys Res 89(B9):7719–7735

    Article  Google Scholar 

  • Burkart B (1978) Offset across the Polochic fault of Guatemala and Chiapas, Mexico. Geol 6:328–332

    Article  Google Scholar 

  • Burkart B, Scotese CR (1990) The Orizaba fault zone: link between the Mexican Volcanic Belt and strike-slip faults of Northern Central America. EOS Trans AGU 71:1559

    Article  Google Scholar 

  • Burkart B, Self S (1985) Extension and rotation of crustal blocks in northern Central America and effect on the volcanic arc. Geology 13:22–26

    Article  Google Scholar 

  • Canora C, Villamor P, Martínez Díaz JJ, Berryman KR, Álvarez Gómez JA, Capote R, Hernández W (2012) Paleoseismic analysis of the San Vicente segment of the El Salvador Fault Zone, El Salvador, Central America. Geol Acta 10(2):103–123

    Google Scholar 

  • Carr MJ, Stoiber RE (1977) Geologic setting of some destructive earthquakes in Central America. Geol Soc Am Bull 88:151–156

    Article  Google Scholar 

  • CFE (Comisión Federal de Electricidad) (2008) Manual de Obras Civiles: Diseño por sismo: México. Instituto de Investigaciones Eléctricas, Cuernavaca, p 325

    Google Scholar 

  • Chen K, Feng W, Liu Z, Song YT (2018) 2017 Mw 8.1 Tehuantepec earthquake: deep slip and rupture directivity enhance ground shaking but weaken the tsunami. Seismol Res Lett 89(4):1314–1322

    Article  Google Scholar 

  • Chiou BJ, Youngs RR (2008) An NGA model for the average horizontal component of peak ground motion and response spectra. Earthq Spectra 24:173–215

    Article  Google Scholar 

  • Cornell A (1968) Engineering seismic risk analysis. Bull Seismol Soc Am 58:1583–1606

    Google Scholar 

  • Damon P, Montesinos E (1978) Late Cenozoic volcanism and metallogenesis over an active Benioff zone in Chiapas, Mexico. Ariz Geol Soc Dig 11:155–168

    Google Scholar 

  • DeMets C (2001) A new estimate for present-day Cocos-Caribbean plate motion: implications for slip along the Central America Volcanic Arc. Geophys Res Lett 28:4043–4046

    Article  Google Scholar 

  • DeMets C, Gordon RG, Argus DF, Stein S (1990) Current plate motions. Geophys J Int 101:425–478

    Article  Google Scholar 

  • Douglas J, Akkar S, Ameri G, Bard PY, Bindi D, Bommer JJ, Bora SS, Cotton F, Derras B, Hermkes M, Kuehn NM, Luzi L, Massa M, Pacor F, Riggelsen C, Sandikkaya MA, Scherbaum F, Stafforf PJ, Traversa P (2014) Comparisons among the five ground-motion models developed using RESORCE for the prediction of response spectral accelerations due to earthquakes in Europe and the Middle East. Bull Earthq Eng 12:341–358

    Article  Google Scholar 

  • Dziewonski AM, Chou TA, Woodhouse JH (1981) Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. J Geophys Res 86(B4):2825–2852

    Article  Google Scholar 

  • Ekström G, Nettles M, Dziewonski AM (2012) The global CMT project 2004–2010: centroid-moment tensors for 13,017 earthquakes. Phys Earth Planet Int 200:1–9

    Article  Google Scholar 

  • Figueroa A (1973) Sismicidad en Chiapas. Universidad Nacional Autónoma de México, Instituto de Ingeniería 316:5–50

  • Franco A, Molina E, Lyon-Caen H, Vergne J, Monfret T, Nercessian A, Cortez S, Flores O, Monterosso D, Requenna J (2009) Seismicity and crustal structure of the Polochic-Motagua fault system area (Guatemala). Seismol Res Lett 80:977–984

    Article  Google Scholar 

  • Franco A, Lasserre C, Lyon-Caen H, Kostoglodov V, Molina E, Guzmán-Speziale M, Monterosso D, Robles V, Figueroa C, Amaya W, Barrier E, Chiquin L, Moran S, Flores O, Romero J, Santiago JA, Manea M, Manea VC (2012) Fault kinematics in northern Central America and coupling along the subduction interface of the Cocos Plate, from GPS data in Chiapas (Mexico), Guatemala and El Salvador. Geophys J Int 189:1223–1236

    Article  Google Scholar 

  • García D, Singh SK, Herráiz M, Pacheco JF, Ordaz M (2004) Inslab earthquakes of Central Mexico: Q, source spectra, and stress drop. Bull Seismol Soc Am 94(3):789–802

    Article  Google Scholar 

  • García D, Singh SK, Herráiz M, Ordaz M, Pacheco JF (2005) Inslab earthquakes of central Mexico: peak ground-motion parameters and response spectra. Bull Seismol Soc Am 95:2272–2282

    Article  Google Scholar 

  • García-Acosta V, Suárez G (1996) Los sismos en la historia de México. Universidad Nacional Autónoma de México, Centro de Investigaciones y Estudios Superiores en Antropología Social y El Fondo de Cultura Económica, México, p 719

  • Gusman AR, Mulia IE, Satake K (2018) Optimum sea surface displacement and fault slip distribution of the 2017 Tehuantepec earthquake (Mw 8.2) in Mexico estimated from tsunami waveforms. Geophys Res Lett 45:646–653

    Article  Google Scholar 

  • Guzmán-Speziale M (2010) Beyond the Motagua and Polochic faults: active strike-slip faulting along the western North American-Caribbean plate boundary zone. Tectonophysics 496:17–27

    Article  Google Scholar 

  • Guzmán-Speziale M, Meneses-Rocha JJ (2000) The North American-Caribbean plate boundary west of the Motagua-Polochic fault system: a fault jog in Southeastern Mexico. J S Am Earth Sci 13:459–468

    Article  Google Scholar 

  • Guzmán-Speziale M, Molina-Garza RS (2012) The Tonalá fault in southeastern Mexico: Evidence that the Central America forearc sliver is not being detached? Fall Meet AGU, San Francisco, Calif, 3-7 Dec Abstr T33H-08 ISC 2014 International Seismological Centre, On-line Bulletin, http://www.isc.ac.uk, Thatcham, United Kingdom, https://doi.org/10.31905/D808B830. Accessed Jan 2014

  • Guzmán-Speziale M, Pennington WD, Matumoto T (1989) The triple junction of the North American, Cocos, and Caribbean plates: seismicity and tectonics. Tectonics 8:981–997

    Article  Google Scholar 

  • Guzmán-Speziale M, Valdés-González C, Molina E, Gómez JM (2005) Seismic activity along the Central America volcanic arc: is it related to subduction of the Cocos plate? Tectonophysics 400:241–254

    Article  Google Scholar 

  • Havskov J, Singh SK, Novelo D (1982) Geometry of the benioff zone in the Tehuantepec area in southern Mexico. Geofis Int 21:325–330

    Google Scholar 

  • Heidarzadeh M, Ishibe T, Harada T (2018) Constraining the source of the Mw 8.1 Chiapas, Mexico Earthquake of 8 September 2017 using Teleseismic and Tsunami observations. Pure Appl Geophys 175(6):1925–1938

    Article  Google Scholar 

  • Lyon-Caen H, Barrier E, Lasserre C, Franco A, Arzu I, Chiquin L, Chiquin M, Duquesnoy T, Flores O, Galicia O, Luna J, Molina E, Porras O, Requena J, Robles V, Romero R, Wolf R (2006) Kinematics of the North American–Caribbean-Cocos plates in Central America from new GPS measurements across the Polochic-Motagua fault system. Geophys Res Lett 33:L19309

    Article  Google Scholar 

  • Manea VC, Manea M, Ferrari L (2013) A geodynamical perspective on the subduction of Cocos and Rivera plates beneath Mexico and Central America. Tectonophysics 609:56–81

    Article  Google Scholar 

  • Marzocchi W, Taroni M, Selva J (2015) Accounting for epistemic uncertainty in PSHA: logic tree and ensemble modeling. Bull Seismol Soc Am 105:2151–2159

    Article  Google Scholar 

  • McGuire RK (1976) FORTRAN computer program for seismic risk analysis. USGS 76-67

  • Meneses-Rocha JJ (2001) Tectonic evolution of the Ixtapa graben, an example of a strike-slip basin of southeastern Mexico: implications for regional petroleum system. Memoirs Am Assoc Petroleum Geol 75:183–216

    Google Scholar 

  • Molina-Garza RS, Geissman JW, Wawrzyniec TF, Peña Alonso TA, Iriondo A, Weber B, Aranda-Gómez J (2015) Geology of the Coastal Chiapas (Mexico) Miocene Plutons and the Tonalá Shear Zone: syntectonic emplacement and rapid exhumation during sinistral transpression. Lithosphere 7(3):257–274

    Article  Google Scholar 

  • Movarec D (1983) Study of the Concordia fault system near Jericó, Chiapas, Mexico. University of Texas, Arlington, Master of Science in Geology Thesis, p 148

  • Muñoz Lumbier M (1935) Geografía sísmica: con aplicaciones a la República Mexicana, contribución a la carta mundial de calamidades. Talleres Gráficos de la Nación, México, p 126

    Google Scholar 

  • Okuwaki R, Yagi Y (2017) Rupture process during the Mw 8.1 2017 Chiapas Mexico earthquake: shallow intraplate normal faulting by slab bending. Geophys Res Lett 44:11,816–11,823

    Article  Google Scholar 

  • Ordaz M, Aguilar A, Arboleda J (2007) CRISIS 2007: program for computing seismic hazard. Instituto de Ingeniería, Universidad Nacional Autónoma de México, Ciudad de México

    Google Scholar 

  • Ordoñez E (1936) Principal physiographic provinces of Mexico. AAPG Bull 20:1277–1307

    Google Scholar 

  • Pacheco JF, Sykes LR (1992) Seismic moment catalog of large shallow earthquakes, 1900 to 1989. Bull Seismol Soc Am 82:1306–1349

    Google Scholar 

  • Padilla y Sánchez RJ (2007) Evolución geológica del sureste mexicano desde el Mesozoico al presente en el contexto regional del Golfo de México. Boletín de la Sociedad Geológica Mexicana 59:19–42

    Article  Google Scholar 

  • Pantoja-Alor J, Rincón-Orta C, Fries C, Silver LT, Solorio-Murguía J (1974) Contribuciones a la geocronología de Chiapas. Asociación de Petroleras Mexicanas Boletín 26:205–223

    Google Scholar 

  • Pardo M, Suárez G (1995) Shape of the subducted Rivera and Cocos plate in southern Mexico: seismic and tectonic implications. J Geophys Res 100(B7):12357–12373

    Article  Google Scholar 

  • Plafker G (1976) Tectonic aspects of the Guatemala earthquake of 4 February 1976. Science 193:1201–1208

    Article  Google Scholar 

  • Ramírez-Herrera T, Corona N, Ruiz-Angulo A, Melgar D, Zavala-Hidalo J (2018) The 8 September 2017 Tsunami triggered by the Mw 8.2 intraplate earthquake, Chiapas, Mexico. Pure Appl Geophys 175:25–34

    Article  Google Scholar 

  • Ratschbacher L, Franz L, Min M, Bachmann R, Martens U, Stanek K, Stübner K, Nelson BK, Herrmann U, Weber B, López-Martínez M, Jonckheere R, Sperner B, Tichomirowa M, McWilliams MO, Gordon M, Meschede M, Bock P (2009) The North American-Caribbean plate boundary in Mexico-Guatemala-Honduras. Geol Soc Lond Spec Publ 328:219–293

    Article  Google Scholar 

  • Reasenberg P (1985) Second-order moment of central California seismicity, 1969–1982. J Geophys Res 90(B7):5479–5495

    Article  Google Scholar 

  • Rebollar CJ, Quintanar L, Yamamoto J, Uribe A (1999a) Source process of the Chiapas, Mexico, Intermediate-depth earthquake (M w = 7.2) of 21 October 1995. Bull Seismol Soc Am 89:348–358

    Google Scholar 

  • Rebollar CJ, Espindola VH, Uribe A, Mendoza A, Vertti AP (1999b) Distributions of stresses and geometry of the Wadati-Benioff zone under Chiapas, Mexico. Geofis Int 38:95–106

    Google Scholar 

  • Sahakian VJ, Melgar D, Quintanar L, Ramírez-Guzmán L, Pérez-Campos X, Baltay A (2018) Ground Motions from the 7 and 19 September 2017 Tehuantepec and Puebla-Morelos, Mexico. Earthquakes. Bull Seismol Soc Am 108(6):3300–3312

    Google Scholar 

  • Salvador A (1991) The Gulf of Mexico Basin. In: Bartolini C, Buffler RT, Cantu-Chapa A (eds) The geology of North America, AAPG memoir, pp 389–444

  • Sánchez-Montes de Oca R (1979) Geología petrolera de la Sierra de Chiapas. Boletín de la Asociación Mexicana de Geólogos Petroleros 31:67–97

    Google Scholar 

  • Sedlock RL, Ortega-Gutiérrez F, Speed RC (1993) Tectonostratigraphic terranes and tectonic evolution of Mexico. Geol Soc Am Special Papers 278:1–153

    Article  Google Scholar 

  • Shedlock KM (1999) Seismic hazard map of North and Central America and the Caribbean. Ann Geofis 42:977–997

    Google Scholar 

  • Shedlock KM, Giardini D, Grünthal G, Zhang P (2000) The GSHAP global seismic hazard map. Seismol Res Lett 71:679–689

    Article  Google Scholar 

  • Singh SK, Ordaz M, Alcántara L, Shapiro N, Kostoglodov V, Pacheco JF, Alcocer S, Gutiérrez C, Quaas R, Mikumo T, Ovando E (2000) The Oaxaca earthquake of 30 September 1999 (M w = 7.5): a normal‐faulting event in the subducted Cocos Plate. Seismol Res Lett 71(1):67–78

    Article  Google Scholar 

  • SSN (Servicio Sismológico Nacional) (2017) Reporte especial sobre el sismo de Tehuantepec (2017-09-07 23:49 M 82) Servicio Sismológico Nacional, UNAM 1-11. Last Accessed Sept 2017

  • Stepp JC (1972) Analysis of completeness of the earthquake sample in the Puget Sound area and its effect on statistical estimates of earthquake hazard. Proc of the 1st Int Conf on Microzonazion. Seattle 2:897–910

    Google Scholar 

  • Stewart JP, Midorikawa S, Graves RW, Khodaverdi K, Kishida T, Miura H, Bozorgnia Y, Campbell W (2013) Implications of the Mw 90 Tohoku-Oki Earthquake for Ground Motion Scaling with Source, Path, and Site Parameters. Earthq Spectra 29:1–21

    Article  Google Scholar 

  • Stewart JP, Douglas J, Javanbarg M, Abrahamson NA, Bozorgnia Y, Boore DM, Campbell K, Delavaud E, Erdik M, Stafford PJ (2015) Selection of Ground Motion Prediction Equations for the Global Earthquake Model. Earthq Spectra 31:19–45

    Article  Google Scholar 

  • Strasser FO, Arango MC, Bommer JJ (2010) Scaling of the source dimensions of interface and intraslab subduction-zone earthquakes with moment magnitude. Seismol Res Lett 81:941–950

    Article  Google Scholar 

  • Tanner JG, Shedlock KM (2004) Seismic hazard maps of Mexico, the Caribbean, and central and South America. Tectonophysics 390:159–175

    Article  Google Scholar 

  • Wadge G, Burke K (1983) Neogene Caribbean plate rotation and associated Central American tectonic evolution. Tectonics 2:633–643

    Article  Google Scholar 

  • Wawrzyniec T, Molina-Garza RS, Geissman J, Iriondo A (2005) A newly discovered, relic, transcurrent plate boundary—The Tonala shear zone and paleomagnetic evaluation of the western Maya block, SW Mexico. Geol Soc Am Abstr 37(7):68

  • Wells D, Coppersmith KJ (1994) New empirical relationships among magnitude, rupture length, rupture width, rupture area and surface displacement. Bull Seismol Soc Am 84:974–1002

    Google Scholar 

  • Wessel P, Smith WHF (1998) New improved version of Generic Mapping Tools released. EOS Trans AGU 79:579

    Article  Google Scholar 

  • White RA (1984) Catalog of historic seismicity in the vicinity of the Chixoy-Polochic and Motagua faults, Guatemala. USGS Final Report USGS-OFR-84-88:26

  • White RA (1985) The Guatemala earthquake of 1816 on the Chixoy-Polochic Fault. Bull Seismol Soc Am 75:455–473

    Google Scholar 

  • White RA, Harlow DH (1993) Destructive upper-crustal earthquakes of Central America since 1900. Bull Seismol Soc Am 83:1115–1142

    Google Scholar 

  • White RA, Ligorria JP, Cifuentes IL (2004) Seismic history of the Middle America subduction zone along El Salvador, Guatemala, and Chiapas, Mexico: 1526–2000. Geol Soc Am Special Pap 375:379–396

    Google Scholar 

  • Wiemer S (2001) A software package to analyze seismicity: ZMAP. Seismol Res Lett 72:373–382

    Article  Google Scholar 

  • Witt C, Rangin C, Andreani L, Olaez N, Martinez J (2011) The transpressive left-lateral Sierra Madre de Chiapas and its buried front in the Tabasco plain (southern Mexico). J Geol Soc 169:143–155

    Article  Google Scholar 

  • Ye L, Lay T, Bai Y, Cheung KF, Kanamori H (2017) The 2017 Mw 8.2 Chiapas, Mexico, earthquake: energetic slab detachment. Geophys Res Lett 44:11,824–11,832

    Article  Google Scholar 

  • Youngs RR, Chiou SJ, Silva WJ, Humphrey JR (1997) Strong ground motion attenuation relationship for subduction zone earthquakes. Seismol Res Lett 86:58–73

    Article  Google Scholar 

  • Zhao JX, Zhang J, Asano A, Ohno Y, Oouchi T, Takahashi T, Ogawa H, Irikura K, Thio HK, Somerville PG, Fukushima Y, Fukushima Y (2006) Attenuation relations of strong ground motion in Japan using site classification based on predominant period. Bull Seismol Soc Am 96:898–913

    Article  Google Scholar 

  • Zúñiga FR, Suárez O, Ordaz M, García-Acosta V (1997) México, Proyecto: Peligro sísmico en Latinoamérica y el Caribe. Instituto Panamericano de Geografía e Historia and Centro Internacional de Investigaciones para el desarrollo Ottawa, Canadá Proyecto 89-0190, vol 2, p 82

  • Zúñiga FR, Reyes MA, Valdés C (2000) A general overview of the catalog of recent seismicity compiled by the Mexican Seismological Survey. Geofis Int 39:161–170

    Google Scholar 

Download references

Acknowledgements

The master’s thesis of the first author conducted at the Geology Faculty of Universidad Complutense de Madrid (UCM, Spain) provided the basis for this research. We are grateful to fruitful discussions with Dr. Ramón Capote from UCM at initial stages of this work. Drs. Ramón Zúñiga and Mario Ordaz from Universidad Autónoma de México are also acknowledged for providing us with a copy of the Mexican seismic catalogue and CRISIS software, respectively. Figures showing maps have been produced using GMT software (Wessel and Smith 1998). We thank José A. Álvarez-Gómez and an anonymous reviewer for their thoughtful comments and suggestions which led to a better version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. García-Mayordomo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

On September 8, 2017, 04:49 a Mw = 8.2 event occurred 115 km off the coast of Chiapas in the Gulf of Tehuantepec (SSN 2017). This event, known as the Tehuantepec event, is the largest earthquake recorded in Chiapas since 1902, having caused a moderate tsunami and nearly one hundred people killed (Gusman et al. 2018; Ramírez-Herrera et al. 2018). The hypocenter has been located at a depth of 58 km, and the focal mechanism shows almost pure normal faulting, one of the nodal planes striking 311º, parallel to the Middle America Trench and dipping almost vertically (SSN 2017). Location, focal depth and focal mechanism strongly suggest that this is a intraslab (or inslab) event, generated within the Cocos plate by the release of downdip stresses in the subducted slab (Okuwaki and Yagi 2017; Ye et al. 2017; Heidarzadeh et al. 2018). The occurrence of intraslab events is well known in the Mexican subduction zone (e.g. Singh et al. 2000), and they are specifically considered in our seismic hazard analysis by modelling two seismogenic sources (see Sect. 3.2). Adding the Tehuantepec event to our earthquake catalogue would produce an increase in the annual frequencies of large magnitudes at these sources, and it will compel hazard analysts to reassess upwards the maximum potential magnitudes of intraslab sources in future seismic hazard assessments of the Mexican and Central America subduction zones. However, considering that seismic hazard at a specific site is the aggregate result from the contribution of all possible seismogenic sources, we would expect that our results in terms of strong ground motion would remain similar, as there are other sources that also have high activity rates and they are located closer to population centres than the intraslab source-zone (e.g. interface zone, active crustal zones). Furthermore, strong ground motion measurements related to this event seem to confirm the good performance of García et al. (2005) GMPE for intraslab events (e.g. Sahakian et al. 2018; Chen et al. 2018).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez-Lomelí, A.G., García-Mayordomo, J. Seismic hazard at a triple plate junction: the state of Chiapas (México). Nat Hazards 97, 1297–1325 (2019). https://doi.org/10.1007/s11069-019-03710-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-019-03710-4

Keywords

Navigation