Skip to main content
Log in

Calculating snow-avalanche return period from tree-ring data

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

The return period is a key element used for snow-avalanche characterization. To calculate the return period, historical data regarding past snow-avalanche activity are required. In mountain areas where past snow avalanches are poorly documented, dendrogeomorphic approaches constitute a reliable method for the reconstruction of past snow avalanches at the temporal scale of living trees. This paper presents an automated method for calculating the snow-avalanche return period using a digital elevation model and the location of the trees disturbed by every reconstructed snow-avalanche occurrence. Unlike the existing method, the method we propose requires neither the calculation of return period for every sampled tree nor the use of interpolation. This new method is based on the determination of spatial extent for every past snow-avalanche occurrence using the upslope area algorithm. The number of past snow-avalanche occurrences is calculated for every pixel of the path. The chronology length is divided by the number of past snow-avalanche occurrences to obtain the return period. In the present paper, both the proposed method and the existing method are applied to calculate the return period for three confined snow-avalanche paths located in Parâng Mountains, part of the Romanian Carpathians. Results are compared and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alestalo J (1971) Dendrochronological interpretation of geomorphic processes. Fennia 105:1–139

    Google Scholar 

  • Amoroso M, Maddison J, Clark MG, Nichols C, Toth N, Smith DJ (2009) An estimate of snow avalanche frequency at Apex Mountain, south-central British Columbia, Canada. In: First American dendrochronological conference

  • Bollschweiler M, Stoffel M, Schneuwly DM, Bourqui K (2008) Traumatic resin ducts in Larix decidua stems impacted by debris flows. Tree Physiol 28(2):255–263

    Article  Google Scholar 

  • Boucher D, Filion L, Hétu B (2003) Reconstitution dendrochronologique et fréquence des grosses avalanches de neige dans un couloir subalpin du mont Hog’s Back, en Gaspésie centrale (Québec). Géog Phys Quatern 57(2–3):159–168

    Google Scholar 

  • Bud M (2008) Ecoturismul în grupa montană Parâng. Doctoral thesis, Faculty of Geography, University of Bucarest, Bucarest

  • Butler DR, Malanson GP (1985) A history of high-magnitude snow avalanches, southern Glacier National Park, Montana, USA. Mt Res Dev 5(2):175–182

    Article  Google Scholar 

  • Butler DR, Sawyer CF (2008) Dendrogeomorphology and high-magnitude snow avalanches: a review and case study. Nat Hazards Earth Syst Sci 8(2):303–309

    Article  Google Scholar 

  • Cappabianca F, Barbolini M, Natale L (2008) Snow avalanche risk assessment and mapping: a new method based on a combination of statistical analysis, avalanche dynamics simulation and empirically-based vulnerability relations integrated in a GIS platform. Cold Reg Sci Technol 54(3):193–205

    Article  Google Scholar 

  • Carrara PE (1979) The determination of snow avalanche frequency through tree-ring analysis and historical records at Ophir, Colorado. Geol Soc Am Bull 90(8):773–780

    Article  Google Scholar 

  • Corona C, Rovéra G, Lopez Saez J, Stoffel M, Perfettini P (2010) Spatio-temporal reconstruction of snow avalanche activity using tree rings: pierres Jean Jeanne avalanche talus, Massif de l’Oisans, France. Catena 83(2):107–118

    Google Scholar 

  • Corona C, Lopez Saez J, Stoffel M, Bonnefoy M, Richard D, Astrade L, Berger F (2012) How much of the real avalanche activity can be captured with tree rings—an evaluation of classic dendrogeomorphic approaches and comparison with historical archives. Cold Reg Sci Technol 74:31–42

    Article  Google Scholar 

  • Decaulne A, Eggertsson Ó, Sæmundsson Þ (2012) A first dendrogeomorphologic approach of snow avalanche magnitude–frequency in Northern Iceland. Geomorphology 167:35–44

    Article  Google Scholar 

  • Decaulne A, Ólafur E, Sæmundsson Þ (2013) Summer growth tells winter tales: dendrogeomorphology applied to snow-avalanche research in Northern Iceland. Arbres and Dynamiques 30–48

  • Decaulne A, Eggertsson Ó, Laute K, Beylich A (2014) A 100-year extreme snow-avalanche record based on tree-ring research in upper Bødalen, inner Nordfjord, western Norway. Geomorphology 218:3–15

    Article  Google Scholar 

  • Dubé S, Filion L, Hétu B (2004) Tree-ring reconstruction of high-magnitude snow avalanches in the northern Gaspé Peninsula, Québec, Canada. Arct Antarct Alp Res 36(4):555–564

    Article  Google Scholar 

  • Freeman TG (1991) Calculating catchment area with divergent flow based on a regular grid. Comput Geosci 17(3):413–422

    Article  Google Scholar 

  • Fugaciu NR, Dinu I (2014) The development of the tourist area in the Parâng Mountains. Sibiu Alma Mater Univ J 7(2):69–79

    Google Scholar 

  • Germain D, Filion L, Hétu B (2005) Snow avalanche activity after fire and logging disturbances, northern Gaspé Peninsula, Quebec, Canada. Can J Earth Sci 42(12):2103–2116

    Article  Google Scholar 

  • Germain D, Filion L, Hétu B (2009) Snow avalanche regime and climatic conditions in the Chic-Choc Range, eastern Canada. Clim Change 92(1–2):141–167

    Article  Google Scholar 

  • Germain D, Hétu B, Filion L (2010) Tree-ring based reconstruction of past snow avalanche events and risk assessment in Northern Gaspé Peninsula (Québec, Canada). In: Stoffel M, Bollschweiler M, Butler DR, Luckman BH (eds) Tree rings and natural hazards. Springer, Amsterdam, pp 51–73

    Chapter  Google Scholar 

  • Johnston K, ver Hoef JM, Krivoruchko K, Lucas N (2001) Using ArcGIS geostatistical analyst. ESRI, Redlands

    Google Scholar 

  • Jomelli V, Bertran P (2001) Wet snow avalanche deposits in the French Alps: structure and sedimentology. Geografiska Annaler Series A Physical Geography 83(1–2):15–28

    Article  Google Scholar 

  • Keylock CJ, Barbolini M (2001) Snow avalanche impact pressure-vulnerability relations for use in risk assessment. Can Geotech J 38(2):227–238

    Article  Google Scholar 

  • Laternser M, Schneebeli M (2002) Temporal trend and spatial distribution of avalanche activity during the last 50 years in Switzerland. Nat Hazards 27(3):201–230

    Article  Google Scholar 

  • Luckman BH (2010) Dendrogeomorphology and snow avalanche research. In: Bollschweiler M, Butler DR, Luckman BH, Stoffel M (eds) Tree rings and natural hazards. Springer, Amsterdam, pp 27–34

    Chapter  Google Scholar 

  • McClung D, Schaerer P (2006) The Avalanche Handbook, 3rd edn. The Mountaineers Books, Seattle

    Google Scholar 

  • Mock CJ, Birkeland KW (2000) Snow avalanche climatology of the western United States mountain ranges. Bull Am Meteor Soc 81(10):2367–2392

    Article  Google Scholar 

  • Muntán E, Garcia C, Oller P, Martí G, Garcia A, Gutiérrez E (2009) Reconstructing snow avalanches in the Southeastern Pyrenees. Nat Hazards Earth Syst Sci 9(5):1599–1612

    Article  Google Scholar 

  • National Agency for Cadastre and Land Registration (2006) Romania orthoimagery. Retrieved 01 30, 2014, from ecwp://195.138.192.5/mosaics_5000/hunedoara.ecw

  • Neuwirth B, Esper J, Schweingruber FH, Winiger M (2004) Site ecological differences to the climatic forcing of spruce pointer years from the Lötschental, Switzerland. Dendrochronologia 21(2):69–78

    Article  Google Scholar 

  • Phipps RL (1985) Collecting, preparing, crossdating and measuring tree increment cores. US Department of the Interior, Geological Survey, pp 1–48

  • Pop OT, Gavrilă IG, Roșian G, Meseșan F, Decaulne A, Holobâcă IH, Anghel T (2016) A century-long snow avalanche chronology reconstructed from tree-rings in Parâng Mountains (Southern Carpathians, Romania). Quatern Int 415:230–240

    Article  Google Scholar 

  • Pudasaini SP, Hutter K (2007) Avalanche dynamics: dynamics of rapid flows of dense granular avalanches. Springer, Berlin

    Google Scholar 

  • Reardon BA, Pederson GT, Caruso CJ, Fagre DB (2008) Spatial reconstructions and comparisons of historic snow avalanche frequency and extent using tree rings in Glacier National Park, Montana, USA. Arct Antarct Alp Res 40(1):148–160

    Article  Google Scholar 

  • RINNTECH (2017) RINNTECH—technology for tree and wood analysis TSAP-WinTM. Retrieved 12 14, 2017, from http://www.rinntech.de: http://www.rinntech.de/content/view/17/48/lang,english/index.html

  • Romania-Insider.com (2017) Deadly avalanches on Romania’s National Day. Retrieved from https://romania-insider.com: https://www.romania-insider.com/deadly-avalanches-romanias-national-day/

  • Săndulache C, Săndulache I, Grecu F, Dobre R, Irimescu A (2015) Geomorphological processes within the alpine level of Parâng Mountains. Revista de Geomorfologie 17:29–44

    Google Scholar 

  • Shroder JF (1978) Dendrogeomorphological analysis of mass movement on Table Cliffs Plateau, Utah. Quatern Res 9(2):168–185

    Article  Google Scholar 

  • Stoffel M, Bollschweiler M (2009) What tree rings can tell about earth-surface processes: teaching the principles of dendrogeomorphology. Geogr Compass 3(3):1013–1037

    Article  Google Scholar 

  • Stoffel M, Corona C (2014) Dendroecological dating of geomorphic disturbance in trees. Tree-Ring Res 70(1):3–20

    Article  Google Scholar 

  • Stoffel M, Butler DR, Corona C (2013) Mass movements and tree rings: a guide to dendrogeomorphic field sampling and dating. Geomorphology 200:106–120

    Article  Google Scholar 

  • Van Groenigen JW, Siderius W, Stein A (1999) Constrained optimisation of soil sampling for minimisation of the kriging variance. Geoderma 87(3):239–259

    Article  Google Scholar 

  • Voiculescu M, Onaca A (2014) Spatio-temporal reconstruction of snow avalanche activity using dendrogeomorphological approach in Bucegi Mountains Romanian Carpathians. Cold Reg Sci Technol 104:63–75

    Article  Google Scholar 

  • Voiculescu M, Onaca A, Chiroiu P (2016) Dendrogeomorphic reconstruction of past snow avalanche events in Bâlea glacial valley–Făgăraş massif (Southern Carpathians), Romanian Carpathians. Quatern Int 415:286–302

    Article  Google Scholar 

Download references

Acknowledgements

This work represents a contribution to the Bilateral Project ZONAGEOTOUR «Zonage des aléas géomorphologiques dans les espaces touristiques des massifs du Parâng (Roumanie) et du Pirin (Bulgarie)» (Geomorphic hazard zonation in tourism areas of Parâng Mts., Romania and Pirin Mts., Bulgaria), funded by the Agence Universitaire de la Francophonie (AUF) and Fonds de Recherche Scientifique (FRS) de Bulgarie. The authors acknowledge the anonymous reviewer for the helpful and very positive comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olimpiu T. Pop.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meseșan, F., Gavrilă, I.G. & Pop, O.T. Calculating snow-avalanche return period from tree-ring data. Nat Hazards 94, 1081–1098 (2018). https://doi.org/10.1007/s11069-018-3457-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-018-3457-y

Keywords

Navigation