Skip to main content

Advertisement

Log in

Population and building vulnerability assessment by possible worst-case tsunami scenarios in Salinas, Ecuador

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Ecuador has been prone to experience earthquakes and tsunamis linked to events in the subduction zone between the Nazca and the South American plates. The main objective of this investigation was to assess the population and buildings vulnerability by a possible worst-case Tsunami scenario in the highly touristic city of Salinas—Ecuador. The vulnerability of buildings was investigated by Fragility Functions (FFs) and Vulnerability Index, while the population vulnerability was assessed by FFs. The population of permanent residents (42,860 inhabitants) and tourists (highly variable, but reaching up to 40,163 tourists/day and 4790 tourists/night) were separately studied during nine public holydays/long weekends (i.e., when the population density reaches critical levels), and during daytime/nighttime. In the selected scenario (i.e., hypocenter: 100 km southwest of Salinas, ocean depth: 2 km, and 8.0 moment magnitude), the flood area covered 43% of Salinas county and 43–85% of urban parishes. The most populated areas were exposed to inundation. According to FFs analysis, between 16,380 and 45,410 people would be affected by a tsunamigenic wave during the day and between 7386 and 10,037 during the night of Christmas and Declaration of Independence holydays, respectively. Elderly, handicapped, underage, and tourist were the most vulnerable groups. A total of 2227 structures would be affected by tsunamigenic wave (FFs), representing 40% of exposed structures to the flood area (i.e., 2.03–6.63 m maximum flood depths). A total of 3160 buildings showed Vulnerability Indexes ranging from medium to high. Results from this study would assist in the identification of hazard areas, safe zones, shelter buildings, evacuation routes/times in this densely populated touristic city.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adriano B, Mas E, Koshimura S, Estrada M, Jiménez C (2014) Scenarios of earthquake and tsunami damage probability in Callao Region, Peru using tsunami fragility functions. J Disaster Res 9:968–975

    Article  Google Scholar 

  • Arreaga P (2015) Tsunami inundation modelling and hazard mapping of the south coast of Ecuador. National Graduate Institute for Policy Studies (GRIPS)/ Building Research Institute (BRI), Tsukuba. http://iisee.kenken.go.jp/syndb/%3Faction=abstr%26id=MEE14622%26est=T%26year=2015. Accessed 16 Feb 2018

  • Birkmann J (2006) Measuring vulnerability to promote disaster-resilient societies: Conceptual frameworks and definitions measuring vulnerability to natural hazards: towards disaster resilient societies 1:9–54

    Google Scholar 

  • Charvet I, Suppasri A, Imamura F (2014) Empirical fragility analysis of building damage caused by the 2011 Great East Japan tsunami in Ishinomaki city using ordinal regression, and influence of key geographical features. Stoch Environ Res Risk Assess 28:1853–1867. https://doi.org/10.1007/s00477-014-0850-2

    Article  Google Scholar 

  • Charvet I, Suppasri A, Kimura H, Sugawara D, Imamura F (2015) A multivariate generalized linear tsunami fragility model for Kesennuma City based on maximum flow depths, velocities and debris impact, with evaluation of predictive accuracy. Nat Hazards 79:2073–2099. https://doi.org/10.1007/s11069-015-1947-8

    Article  Google Scholar 

  • Charvet I, Macabuag J, Rossetto T (2017) Estimating tsunami-induced building damage through fragility functions: critical review and research needs. Front Built Environ. https://doi.org/10.3389/fbuil.2017.00036

    Google Scholar 

  • Collot JY, Ribodetti A, Agudelo W, Sage F (2011) The South Ecuador subduction channel: evidence for a dynamic mega-shear zone from 2D fine-scale seismic reflection imaging and implications for material transfer. J Geophys Res Solid Earth. https://doi.org/10.1029/2011jb008429

    Google Scholar 

  • Contreras M (2013) Chronology of tsunamis in Ecuador from 1586 to 2012. Rev Téc 12:55–56

    Google Scholar 

  • Cruz M, Acosta M, Vasquez N (2005) Riesgos por Tsunami en la Costa ecuatoriana. Pan-American Institute of Geography and History. http://www.ipgh.gob.ec/documentos/recursos/RiesgosTsunamiCostaecuatoriana.pdf. Accessed 18 Feb 2018

  • Dall’Osso F, Gonella M, Gabbianelli G, Withycombe G, Dominey-Howes D (2009) A revised (PTVA) model for assessing the vulnerability of buildings to tsunami damage. Nat Hazards Earth Syst Sci 9:1557–1565

    Article  Google Scholar 

  • Dall’Osso F, Maramai A, Graziani L, Brizuela B, Cavalletti A, Gonella M, Tinti S (2010) Applying and validating the PTVA-3 Model at the Aeolian Islands, Italy: assessment of the vulnerability of buildings to tsunamis. Nat Hazards Earth Syst Sci 10:1547–1562. https://doi.org/10.5194/nhess-10-1547-2010

    Article  Google Scholar 

  • Dall’Osso F, Dominey-Howes D, Tarbotton C, Summerhayes S, Withycombe G (2016) Revision and improvement of the PTVA-3 model for assessing tsunami building vulnerability using “international expert judgment”: introducing the PTVA-4 model. Nat Hazards 83:1229–1256. https://doi.org/10.1007/s11069-016-2387-9

    Article  Google Scholar 

  • Delgado A, López J (2009) Creación de un Manual que Permita Medir la Presión en Centros Turísticos de Playa en el Ecuador: Caso Salinas&quot. Guayaquil

  • Dominey-Howes D, Papathoma M (2006) Validating a tsunami vulnerability assessment model (the PTVA Model) using field data from the 2004. Indian Ocean Tsunami Nat Hazards 40:113–136. https://doi.org/10.1007/s11069-006-0007-9

    Article  Google Scholar 

  • Dominey-Howes D, Papathoma M (2007) Validating a tsunami vulnerability assessment model (the PTVA Model) using field data from the 2004. Indian Ocean Tsunami Nat Hazards 40:113–136. https://doi.org/10.1007/s11069-006-0007-9

    Article  Google Scholar 

  • Dominey-Howes D, Dunbar P, Varner J, Papathoma-Köhle M (2010) Estimating probable maximum loss from a Cascadia tsunami. Nat Hazards 53:43–61. https://doi.org/10.1007/s11069-009-9409-9

    Article  Google Scholar 

  • Espinoza J (1992) Terremotos tsunamigénicos en el Ecuador. Acta Oceanogr del Pac 7:21–28

    Google Scholar 

  • ESPOL (2010) Sistema de Información Geográfica de Amenazas y Usos de Suelos de Once Puntos Vulnerables de la Faja Costera del Ecuador. Guayaquil

  • ESPOL (2017) Elaboración de un manual que permite determinar indicadores para la medición de la presión en centros turísticos de playa en el Ecuador: caso Salinas. Espol

  • González-Riancho P et al (2014) Integrated tsunami vulnerability and risk assessment: Application to the coastal area of El Salvador. Nat Hazards Earth Syst Sci. https://doi.org/10.5194/nhess-14-1223-2014

    Google Scholar 

  • Harbitz CB, Løvholt F, Bungum H (2014) Submarine landslide tsunamis: how extreme and how likely? Nat Hazards 72:1341–1374. https://doi.org/10.1007/s11069-013-0681-3

    Article  Google Scholar 

  • INAMHI (2014) Anuario Meteorologico. In: National Institute of Meteorology and Hydrology (ed), vol 1. Quito-Ecuador, p 149. http://www.serviciometeorologico.gob.ec/. Accessed 27 Feb 2018

  • INEC (2010) CPV Interactivo para Investigadores y Académicos: Glosario de Términos Censales*. In: National Institute for Statistics and Census (Ed). p 15. http://www.catalog.ihsn.org/index.php/catalog/4403/download/57053. Accessed 3 Mar 2018

  • INEC (2018) Statistics on population. National Institute for Statistics and Census. http://www.ecuadorencifras.gob.ec/censo-de-poblacion-y-vivienda/. Accessed 7 Mar 2018

  • INOCAR (2016) Tabla II.-Predicción Diaria de Mareas en el Ecuador. Ecuadorian National Oceanographic Institute. http://www.inocar.mil.ec/mareas/TM/2016/LA_LIBERTAD.pdf. Accessed 3 Mar 2018

  • IOC (2016) Tsunami glossary, 2016. UNESCO, Paris

    Google Scholar 

  • Ioualalen M, Monfret T, Béthoux N, Chlieh M, Ponce Adams G, Collot J-Y, Martillo C, Chunga K, Navarrete E (2014) Tsunami mapping in the Gulf of Guayaqui, Ecuador, due to local seismicity. Mar Geophys Res. https://doi.org/10.1007/s11001-014-9225-9

    Google Scholar 

  • Kaiser G, Scheele L, Kortenhaus A, Løvholt F, Römer H, Leschka S (2011) The influence of land cover roughness on the results of high resolution tsunami inundation modeling. Nat Hazards Earth Syst Sci 11:2521–2540. https://doi.org/10.5194/nhess-11-2521-2011

    Article  Google Scholar 

  • Kendrick E, Bevis M, Smalley R, Brooks B, Barriga R, Lauría E, Souto L (2003) The Nazca–South America Euler vector and its rate of change. J S Am Earth Sci 16:125–131

    Article  Google Scholar 

  • Koshimura S, Namegaya Y, Yanagisawa H (2009a) Fragility functions for tsunami damage estimation Doboku Gakkai Ronbunshuu B/JSCE. J Hydrau Coast Environ Eng 65:320–331

    Google Scholar 

  • Koshimura S, Oie T, Yanagisawa H, Imamura F (2009b) Developing fragility functions for tsunami damage estimation using numerical model and post-tsunami data from Banda Aceh, Indonesia. Coast Eng J 51:243–273

    Article  Google Scholar 

  • Latcharote P, Leelawat N, Suppasri A, Imamura F, Developing estimating equations of fatality ratio based on surveyed data of the 2011 (2017) Great east Japan tsunami. IOP Conf Ser Earth Environ Sci. https://doi.org/10.1088/1755-1315/56/1/012011

    Google Scholar 

  • Leelawat N, Suppasri A, Charvet I, Imamura F (2014) Building damage from the 2011 Great East Japan tsunami: quantitative assessment of influential factors. Nat Hazards 73:449–471. https://doi.org/10.1007/s11069-014-1081-z

    Article  Google Scholar 

  • Leone F, Lavigne F, Paris R, Denain J-C, Vinet F (2011) A spatial analysis of the December 26th, 2004 tsunami-induced damages: lessons learned for a better risk assessment integrating buildings vulnerability. Appl Geogr 31:363–375. https://doi.org/10.1016/j.apgeog.2010.07.009

    Article  Google Scholar 

  • Macabuag J et al (2016) A proposed methodology for deriving tsunami fragility functions for buildings using optimum intensity measures. Nat Hazards 84:1257–1285. https://doi.org/10.1007/s11069-016-2485-8

    Article  Google Scholar 

  • MINTUR (2018) Statistics on Tourism. http://servicios.turismo.gob.ec/index.php/portfolio/turismo-cifras/20-oferta-turistica/feriados-nacionales/282. Accessed 5 Feb 2018

  • Okada Y (1985) Surface deformation due to shear and tensile faults in a half-space. Bull Seismol Soc Am 75:1135–1154

    Google Scholar 

  • Omira R, Baptista MA, Miranda JM, Toto E, Catita C, Catalão J (2009) Tsunami vulnerability assessment of Casablanca-Morocco using numerical modelling and GIS tools. Nat Hazards 54:75–95. https://doi.org/10.1007/s11069-009-9454-4

    Article  Google Scholar 

  • Papathoma M, Dominey-Howes D (2003) Tsunami vulnerability assessment and its implications for coastal hazard analysis and disaster management planning, Gulf of Corinth, Greece. Nat Hazards Earth Syst Sci 3:733–747

    Article  Google Scholar 

  • Papathoma M, Dominey-Howes D, Zong Y, Smith D (2003) Assessing tsunami vulnerability, an example from Herakleio, Crete. Nat Hazards Earth Syst Sci 3:377–389

    Article  Google Scholar 

  • Papazachos BC, Scordilis EM, Panagiotopoulos DG, Papazachos CB, Karakaisis GF (2004) Global relations between seismic fault parameters and moment magnitude of earthquakes. Bull Geol Soc Greece 36:1482–1489

    Article  Google Scholar 

  • Park S, van de Lindt JW, Cox D, Gupta R, Aguiniga F (2012) Successive earthquake-tsunami analysis to develop collapse fragilities. J Earthq Eng 16:851–863. https://doi.org/10.1080/13632469.2012.685209

    Article  Google Scholar 

  • Parwanto NB, Oyama T (2014) A statistical analysis and comparison of historical earthquake and tsunami disasters in Japan and Indonesia. Int J Disaster Risk Reduct 7:122–141. https://doi.org/10.1016/j.ijdrr.2013.10.003

    Article  Google Scholar 

  • Quizanga DM (2006) Curvas de fragilidad para las diferentes zonas sísmicas del Ecuador e influencia del refuerzo transversal. ESPE, Sangolqui

    Google Scholar 

  • Reese S, Bradley B, Bind J, Greeme S, Power W, Sturman J (2011) Empirical building fragilities from observed damage in the 2009 South Pacific tsunami. Earth Sci Rev 107:156–173. https://doi.org/10.1016/j.earscirev.2011.01.009

    Article  Google Scholar 

  • Renteria W (2010) Diagnostico de la amenaza tsunamigénica de las costas ecuatorianas. Instituto Oceanográfico de la Armada

  • Rygel L, O’sullivan D, Yarnal B (2006) A method for constructing a social vulnerability index: an application to hurricane storm surges in a developed country. Mitig Adapt Strateg Glob Change 11:741–764. https://doi.org/10.1007/s11027-006-0265-6

    Article  Google Scholar 

  • Saaty TL (1990) The analytic hierarchy process: planning, priority setting, resource allocation. RWS, 287 p

  • Santos A, Tavares AO, Emidio A (2014) Comparative tsunami vulnerability assessment of an urban area: an analysis of Setúbal city. Port Appl Geogr 55:19–29. https://doi.org/10.1016/j.apgeog.2014.08.009

    Article  Google Scholar 

  • Shinozuka M, Feng M, Lee J, Naganuma T (2000) Statistical analysis of fragility curves. Eng Mech 126:1224–1231

    Article  Google Scholar 

  • SNI (2018) National information system. http://sni.gob.ec/inicio. Accessed 15 Feb 2018

  • Suppasri A, Koshimura S, Imamura F (2009) Tsunami fragility curves and structural performance of building along the Thailand coast. In: 8th international workshop on remote sensing for disaster management, pp 3–8

  • Suppasri A, Imamuray F, Koshimuraz S (2010) Effects of the rupture velocity of fault motion, ocean current and initial sea level on the transoceanic propagation of tsunami. Coast Eng J 52:107–132. https://doi.org/10.1142/S0578563410002142

    Article  Google Scholar 

  • Suppasri A, Imamura F, Koshimura S (2012a) Probabilistic tsunami hazard analysis and risk to coastal populations in Thailand. J Earthq Tsunami. https://doi.org/10.1142/S179343111250011X

    Google Scholar 

  • Suppasri A, Imamura F, Koshimura S (2012b) Tsunami hazard and casualty estimation in a coastal area that neighbors the Indian Ocean and South China Sea. J Earthq Tsunami. https://doi.org/10.1142/S1793431112500108

    Google Scholar 

  • Suppasri A, Muhari A, Futami T, Imamura F, Shuto N (2014) Loss functions for small marine vessels based on survey data and numerical simulation of the 2011 Great East Japan tsunami. J Waterw Port Coast Ocean Eng. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000244

    Google Scholar 

  • Suppasri A et al (2016) Improvement of tsunami countermeasures based on lessons from The 2011 Great East Japan Earthquake and Tsunami—situation after five years. Coast Eng J 58:1640011. https://doi.org/10.1142/s0578563416400118

    Article  Google Scholar 

  • Suppasri A, Fukui K, Yamashita K, Leelawat N, Ohira H, Imamura F (2018) Developing fragility functions for aquaculture rafts and eelgrass in the case of the 2011 Great East Japan tsunami. Nat Hazards Earth Syst Sci 18:145–155. https://doi.org/10.5194/nhess-18-145-2018

    Article  Google Scholar 

  • Tarbotton C, Dall’Osso F, Dominey-Howes D, Goff J (2015) The use of empirical vulnerability functions to assess the response of buildings to tsunami impact: comparative review and summary of best practice. Earth Sci Rev 142:120–134. https://doi.org/10.1016/j.earscirev.2015.01.002

    Article  Google Scholar 

  • Taubenböck H et al (2013) Risk reduction at the “Last-Mile”: an attempt to turn science into action by the example of Padang. Indones Nat Hazards 65:915–945. https://doi.org/10.1007/s11069-012-0377-0

    Article  Google Scholar 

  • Vanderveken A, Guha-Sapir D, Below R, Hoyois P, McClean D (2016) Tsunami disaster risk 2016: past impacts and projections. Centre for Research on the Epidemiology of Disasters, The United Nations Office For Disaster Risk reduction, Geneva, Switzerland

    Google Scholar 

  • Vera L (2014) Análisis de serie de tiempo del oleaje frente a Salinas-Ecuador y su relación con el potencial energético

  • Vera T (2015) Tsunami Damage Estimation in Esmeraldas, Ecuador Using Tsunami Fragility Functions. GRIPS BRI

  • Vera L, Lucero M, Mindiola M (2009) Caracterización Oceanográfica de la costa central ecuatoriana

  • Wells D, Coppersmith K (1994) New empirical relationships among magnitude rupture length, rupture width, rupture area, and surface displacement. Bull Seismol Soc Am 84:974–1002

    Google Scholar 

  • Wiebe DM, Cox DT (2013) Application of fragility curves to estimate building damage and economic loss at a community scale: a case study of Seaside. Or Nat Hazards 71:2043–2061. https://doi.org/10.1007/s11069-013-0995-1

    Article  Google Scholar 

  • Wood NJ, Schmidtlein MC (2013) Community variations in population exposure to near-field tsunami hazards as a function of pedestrian travel time to safety. Nat Hazards 65:1603–1628. https://doi.org/10.1007/s11069-012-0434-8

    Article  Google Scholar 

  • Yanagisawa H, Koshimura S, Yagi Y, Fujii Y, Shoji G, Jiménez C (2011) The tsunami Vulnerability assessment in Peru using the Index of potential tsunami exposure. In: Tokyo, Japan, 2011, p 5

Download references

Acknowledgements

Dr. Koshimura, the staff of Building Research Institute, the Japanese International Cooperation Agency, and Dr. María del Pilar Cornejo are acknowledged for their advice and contribution to the current investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Gutierrez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vera San Martín, T., Rodriguez Rosado, G., Arreaga Vargas, P. et al. Population and building vulnerability assessment by possible worst-case tsunami scenarios in Salinas, Ecuador. Nat Hazards 93, 275–297 (2018). https://doi.org/10.1007/s11069-018-3300-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-018-3300-5

Keywords

Navigation