Natural Hazards

, Volume 92, Issue 1, pp 225–255 | Cite as

Multi-sensor DInSAR applied to the spatiotemporal evolution analysis of ground surface deformation in Cerro Prieto basin, Baja California, Mexico, for the 1993–2014 period

  • Olga Sarychikhina
  • Ewa Glowacka
  • Braulio Robles
Original Paper


The combined effects of active tectonics and anthropogenic activities, primarily geothermal resources exploitation for electricity production in Cerro Prieto geothermal field, influence the ground surface deformation in Cerro Prieto basin, Baja California, Mexico. In this study, a large set of multi-sensor C-band SAR images have been employed to reconstruct the spatiotemporal evolution of aseismic ground surface deformation that has affected Cerro Prieto basin from 1993 to 2014. Conventional DInSAR together with the interferograms stacking procedure was applied. The results showed that the study area presented considerable surface deformation (mainly subsidence) during the entire time of the investigation. The main changes in rate and pattern of surface deformation have a good correlation in time and space with the changes in production in the Cerro Prieto geothermal field. Comparison of LOS displacement maps from different viewing geometries, and decomposition (where possible) of LOS displacement into vertical and horizontal (east–west) components, revealed considerable horizontal displacement which mostly reflects the ground movement at and beyond the margin of the subsidence basin toward the areas of highest subsidence rates. In addition, the validation of the DInSAR results by comparing them against measurements from leveling surveys was performed, confirming the high reliably of satellite interferometry for the ground surface deformation rate mapping in the study area.


Aseismic ground deformation Cerro Prieto geothermal field Satellite interferometry Leveling survey 



The authors would like to acknowledge ESA for providing the satellite images in the framework of Cat-1 project (ID–C1P3508). The financial support from the CONACYT project 105907 and CICESE and IMTA internal funds is recognized. We appreciate the access to the 2012 leveling data funded by CONAGUA during the CICESE-CONAGUA, Cuenca Peninsular de Baja California Project. The authors greatly acknowledge the anonymous reviewer for careful reading of the manuscript and helpful comments and suggestions. The authors express sincere thanks to Dr. Alejandro Nava Pichardo for manuscript revision and constructive suggestions that improved the manuscript.

Supplementary material

11069_2018_3206_MOESM1_ESM.docx (43 kb)
Supplementary material 1 (DOCX 43 kb)


  1. Arellano VM, Barragán RM, Aragón A, Izquierdo G, Portugal E, Rodríguez MH, Pérez A (2010) Reservoir characteristics and exploitation-related processes at the CP IV sector of the Cerro Prieto (México) geothermal field. In: Proceedings of the World Geothermal Congress 2010, Bali, IndonesiaGoogle Scholar
  2. Bennett RA, Rodi W, Reilinger RE (1996) Global Positioning System constraints on fault slip rates in southern California and northern Baja, Mexico. J Geophys Res 101(B10):21943–21960CrossRefGoogle Scholar
  3. Berardino P, Fornaro G, Lanari R, Sansosti E (2002) A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans Geosci Remote Sens 40:2375–2383CrossRefGoogle Scholar
  4. Biggs J, Wright T, Lu Z, Parsons B (2007) Multi-interferogram method for measuring interseismic deformation: Denali fault, Alaska. Geophys J Int 170:1165–1179. CrossRefGoogle Scholar
  5. Buckley SM (2000) Radar interferometry measurement of land subsidence. Ph.D. thesis, The University of Texas at Austin, Texas, USAGoogle Scholar
  6. Camacho Ibarra E (2006) Análisis de la deformación vertical del terreno en la región de confluencia del sistema de fallas Cerro Prieto-Imperial en el periodo 1962–2001. M.Sc. thesis, Department of Geophysics, CICESE, Ensenada, B.C., MexicoGoogle Scholar
  7. Carnec C, Fabriol H (1999) Monitoring and modeling land subsidence at the Cerro Prieto geothermal field, Baja California, Mexico, using SAR interferometry. Geophys Res Lett 26(9):1211–1214CrossRefGoogle Scholar
  8. CFE (2010) Cerro Prieto Geothermal Field. CFE, Residencia General de Cerro Prieto, p 46Google Scholar
  9. Costantini M (1998) A novel phase unwrapping method based on network programming. IEEE Trans Geosci Remote Sens 36(3):813–821CrossRefGoogle Scholar
  10. Costantini M, Farina A, Zirilli F (1999) A fast phase unwrapping algorithm for SAR interferometry. IEEE Trans Geosci Remote Sens 37(1):452–460CrossRefGoogle Scholar
  11. Crosetto M, Monserrat O, Iglesias R, Crippa B (2010) Persistent scatterer interferometry: potential, limits and initial C- and X-band comparison. Photogr Eng Remote Sens 76:1061–1069CrossRefGoogle Scholar
  12. Dai K, Liu G, Li Z, Li T, Yu B, Wang X, Singleton A (2015) Article extracting vertical displacement rates in Shanghai (China) with multi-platform SAR images. Remote Sens. 7:9542–9562. CrossRefGoogle Scholar
  13. de Boer J (1980) Paleomagnetism of the Quaternary Cerro Prieto, Crater Elegante, and Salton Buttes volcanic domes in the northern part of the Gulf of California rhombochasm. Lawrence Berkeley Laboratory, Berkeley LBL-9742 Google Scholar
  14. Ding XL, Liu GX, Li ZW, Chen YQ (2004) Ground subsidence monitoring in Hong Kong with satellite SAR interferometry. Photogramm Eng Remote Sens 70(10):1151–1156CrossRefGoogle Scholar
  15. Elders WA, Rex RW, Meidav T, Robinson PT, Biehler S (1972) Crustal spreading in southern California. Science 178:15–24CrossRefGoogle Scholar
  16. Elliott JR, Biggs J, Parsons B, Wright TJ (2008) InSAR slip rate determination on the Altyn Tagh Fault, northern Tibet, in the presence of topographically correlated atmospheric delays. ‎Geophys Res Lett 35:L12309. Google Scholar
  17. Farr TG, Rosen PA, Caro E, Crippen R, Duren R, Hensley S, Kobrick M, Paller M, Rodriguez E, Roth L, Seal D, Shaffer S, Shimada J, Umland J, Werner M, Oskin M, Burbank D, Alsdorf D (2007) The shuttle radar topography mission. Rev Geophys 45(2):RG2004. CrossRefGoogle Scholar
  18. Ferretti A, Prati C, Rocca F (2000) Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Trans Geosci Remote Sens 38:2202–2212CrossRefGoogle Scholar
  19. Ferretti A, Prati C, Rocca F (2001) Permanent scatterers in SAR interferometry. IEEE Trans Geosci Remote Sens 391:10–20Google Scholar
  20. Ferretti AA, Fumagalli F, Novali C, Prati F, Rocca Rucci A (2011) A new algorithm for processing interferometric data-stacks: Squeesar. IEEE Trans Geosci Remote Sens 49(9):3460–3470. CrossRefGoogle Scholar
  21. Fialko Y (2006) Interseismic strain accumulation and the earthquake potential on the southern San Andreas fault system. Nature 441:968–971. CrossRefGoogle Scholar
  22. Flores-Armenta M, Ramírez-Montes M, Morales-Alcalá L (2014) Geothermal activity and development in Mexico–keeping the production going. Presented at “Short Course VI on Utilization of Low- and Medium-Enthalpy Geothermal Resources and Financial Aspects of Utilization”, organized by UNU-GTP and LaGeo, in Santa Tecla, El Salvador, 23–29 March, 2014.
  23. Gabriel AK, Goldstein RM, Zebker HA (1989) Mapping small elevation changes over large areas: differential SAR interferometry. J Geophys Res 94(B7):9183–9191CrossRefGoogle Scholar
  24. García JR (1978) Estudios de nivelación de primer orden en Cerro Prieto. In: Proceedings of First symposium on the Cerro Prieto geothermal field, Baja California, Mexico, pp 148–150Google Scholar
  25. Gens R, van Genderen JL (1996) SAR interferometry: issues, techniques, applications. Int J Remote Sens 17(10):1803–1835CrossRefGoogle Scholar
  26. Glowacka E (1996) Vertical creepment in the southern part of imperial fault (Mexico). In: Proceedings of AGU fall meeting 1996, San Francisco, CA, USAGoogle Scholar
  27. Glowacka E, Nava FA (1996) Major earthquake in Mexicali Valley, Mexico, and fluid extraction at Cerro Prieto geothermal field. Bull Seismol Soc Am 86:93–105Google Scholar
  28. Glowacka E, González J, Fabriol H (1999) Recent vertical deformation in Mexicali Valley and its relationship with tectonics, seismicity, and the exploitation of the Cerro Prieto geothermal field, Mexico. Pure Appl Geophys 156(4):591–614CrossRefGoogle Scholar
  29. Glowacka E, González JJ, Nava FA, Farfán F, Díaz de Cossío G (2001) Monitoring surface deformations in the Mexicali valley, B.C., Mexico. In: Proceedings of tenth international symposium on deformation measurements, Orange, California, USA, pp 175–183Google Scholar
  30. Glowacka E, Sarychikhina O, Nava FA (2005) Subsidence and stress change in the Cerro Prieto geothermal field, B.C, México. Pure Appl Geophys 162:2095–2110CrossRefGoogle Scholar
  31. Glowacka E, Sarychikhina O, Suárez F, Mendoza R, Nava FA (2006) Estudio geológico para definir la zona de hundimiento con el fin de relocalización del canal Nuevo Delta en el Valle de Mexicali. Reporte Técnico. CICESE, México, p 505Google Scholar
  32. Glowacka E, Sarychikhina O, Suárez-Vidal F, Nava FA, Farfan F, Cossio Battani GD, Guzmán M (2007) Aseismic slip observed on the faults in Mexicali Valley, Baja California, Mexico. In: Proceedings of AGU spring meetingGoogle Scholar
  33. Glowacka E, Sarychikhina O, Vázquez González R, Nava FA, Munguía L, Farfan F, Diaz De Cossio G, Garcia Arthur MA (2008) Slow aseismic slip in the pull-apart center of Cerro Prieto (Baja California, Mexico), from geotechnical instruments and InSAR observations. In: Proceedings of SSA 2008 annual meeting, Seismological Society of America, Santa Fe, New Mexico, USA, 79, p 282Google Scholar
  34. Glowacka E, Sarychikhina O, Suárez F, Nava FA, Mellors R (2010) Anthropogenic subsidence in the Mexicali Valley, Baja California, Mexico, and slip on the Saltillo fault. Environ Earth Sci 59(7):1515–1524CrossRefGoogle Scholar
  35. Glowacka E, Sarychikhina O, Robles B, Suarez Vidal F, Ramírez Hernández J, Nava FA (2012) Estudio geológico para definir la línea de hundimiento cero y monitorear la subsidencia de los módulos 10, 11 y 12 en el Valle de Mexicali, en el distrito de riego 014. Reporte Final, Rio Colorado, B.C.Google Scholar
  36. Goldstein RM, Werner CL (1998) Radar interferogram filtering for geophysical applications. Geophys Res Lett 25(21):4035–4038CrossRefGoogle Scholar
  37. González J, Glowacka E, Suárez F, Quiñones JG, Guzmán M, Castro JM, Rivera F, Félix MG (1998) Movimiento reciente de la Falla Imperial, Mexicali, B. C. Ciencia para todos Divulgare, Universidad Autónoma de Baja California 6(22):4–15Google Scholar
  38. Grannell RB, Tarnman DW, Clover RC, Leggewie RM, Aronstam PS, Kroll RC, Eppink J (1979) Precision gravity studies at Cerro Prieto. In: Proceedings of second symposium on the Cerro Prieto geothermal field, Baja California, Mexico, Lawrence Berkeley Laboratory, Berkeley, California, pp 329–331Google Scholar
  39. Gutiérrez-Negrín L (2012) Update of the geothermal electric potential in Mexico. GRC Trans 36:671–677Google Scholar
  40. Gutiérrez-Negrín L, Maya-González R, Quijano JL (2010) Current Status of geothermics in Mexico. In: Proceedings of World Geothermal Congress 2010, International Geothermal Association (IGA), Bali, IndonesiaGoogle Scholar
  41. Gutiérrez-Negrín L, Maya-González R, Quijano-León JL (2015) Present situation and perspectives of geothermal in Mexico. In: Proceedings of World Geothermal Congress 2015, International Geothermal Association (IGA), Melbourne, AustraliaGoogle Scholar
  42. Hanssen RF (2001) Radar interferometry. Data interpretation and error analysis. Kulwer Academic Publisher, DordrechtCrossRefGoogle Scholar
  43. Hooper A, Zebker H, Segall P, Kampes B (2004) A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophys Res Lett 31:611–615CrossRefGoogle Scholar
  44. Kampes B (2006) Radar interferometry: persistent scatterer technique. Remote sensing and digital processing, vol 12. Springer, DordrechtGoogle Scholar
  45. Lachenbruch AH, Sass JH, Galains SP (1985) Heat flow in southernmost California and the origin of the Salton Trough. J Geophys Res 90(B8):6709–6736CrossRefGoogle Scholar
  46. Larsen S, Reilenger R (1991) Age constraints for the present fault configuration in the Imperial Valley, California: evidence for northwestward propagation of the Gulf of California rift system. J Geophys Res 96:10339–10346CrossRefGoogle Scholar
  47. Lippmann MJ, Bodvarsson GS (1983) Numerical studies of the heat and mass transport in the Cerro Prieto geothermal field, Mexico. Water Resour Res 19(3):753–767CrossRefGoogle Scholar
  48. Lippmann MJ, Truesdell AH, Mañón AM, Halfman SE (1991) A review of the hydrogeologic-geochemical model for Cerro Prieto. Geothermics 20:39–52CrossRefGoogle Scholar
  49. Lira H (1999) Resultados de la nivelación de precisión realizada con GPS, en 1998, en el campo geotérmico de Cerro Prieto. Informe Técnico RE 16/98, Comisión Federal de Electricidad, Residencia de Estudios, México, 30 ppGoogle Scholar
  50. Lira H (2005) Actualización del modelo geológico conceptual del yacimiento Geotérmico de Cerro Prieto. Geotermia, Revista Mexicana de Geoenergía 18(1):37–46Google Scholar
  51. Lira H (2006) Características del sismo del 23 de Mayo de 2006. Informe RE-023/2006, Comisión Federal de Electricidad, Residencia de Estudios, MéxicoGoogle Scholar
  52. Lira H, Arellano JF (1997) Resultados de la nivelación de precisión realizada en 1997, en el campo geotérmico Cerro Prieto. Informe Técnico RE 07/97, Comisión Federal de Electricidad, Residencia de Estudios, México, 28 ppGoogle Scholar
  53. Liu GX (2003) Mapping of earth deformations with satellite radar interferometry: a study of its accuracy and reliability performances. Ph.D. dissertation, The Hong Kong Polytechnic University, Hong Kong, ChinaGoogle Scholar
  54. Luo Q, Perissin D, Zhang Y, Jia Y (2014) L- and X-band multi-temporal InSAR analysis of Tianjin subsidence. Remote Sens. 6:7933–7951. CrossRefGoogle Scholar
  55. Massonnet D, Feigl K (1998) Radar interferometry and its application to changes in the earth’s surface. Rev Geophys 36(4):441–500CrossRefGoogle Scholar
  56. Mercado S (1975) Movement of geothermal fluids and temperature distribution in Cerro Prieto geothermal field, Baja California, Mexico. In: Proceedings of second united nations symposium on the development and use of geothermal resources, San Francisco, USA: Washington, D.C., U.S. Government Printing Office (1), pp 487–494Google Scholar
  57. Miranda-Herrera CA (2015) Geothermal and solar energy in Cerro Prieto. In: Proceedings of World Geothermal Congress 2015, International Geothermal Association (IGA), Melbourne, AustraliaGoogle Scholar
  58. Ocampo-Díaz J, Valdez-Salaz B, Shorr M, Sauceda M, Rosas-González N (2005) Review of corrosion and scaling problems in Cerro Prieto geothermal field over 31 years of commercial operations. In: Proceedings of World Geothermal Congress 2005, International Geothermal Association (IGA), Antalya, TurkeyGoogle Scholar
  59. Pelayo A, Razo M, Gutiérrez LCA, Arellano GF, Espinoza JM, Quijano L (1991) Main geothermal fields of México; Cerro Prieto Geothermal Field, Baja California. In: The geology of North America, Geological Society of America, P-3, Economic Geology, México, pp. 23–58Google Scholar
  60. Samieie-Esfahany S, Hanssen R, van Thienen-Visser K, Muntendam-Bos A (2009) On the effect of horizontal deformation on InSAR subsidence estimates. In: Proceedings of Fringe 2009 workshop, ESA SP-677Google Scholar
  61. Sarychikhina O, Glowacka E (2015) Spatio-temporal evolution of aseismic ground deformation in the Mexicali Valley (Baja California, Mexico) from 1993 to 2010, using differential SAR interferometry. In: Proceedings of IAHS 372, pp 335–341.
  62. Sarychikhina O, Glowacka E, Mellors R, Suárez-Vidal F (2011) Land subsidence in the Cerro Prieto geothermal field, Baja California, Mexico, from 1994 to 2005. An integrated analysis of DInSAR, leveling and geological data. J Volcanol Geothherm Res 204:76–90CrossRefGoogle Scholar
  63. Sarychikhina O, Glowacka E, Robles B, Nava FA, Guzman M (2015) Estimation of seismic and aseismic deformation in Mexicali Valley, Baja California, Mexico, in the 2006–2009 Period, using precise leveling, DInSAR, geotechnical instruments data, and modeling. Pure Appl Geophys 172:3139–3162. CrossRefGoogle Scholar
  64. Sarychikhina O, Glowacka E, Mojarro J (2016) Surface deformation associated with geothermal fluids extraction at the Cerro Prieto geothermal field, Baja California, Mexico revealed by DInSAR technique. In: Proceedings of living planet symposium 2016, Prague, Czech Republic, ESA SP-740Google Scholar
  65. Scharroo R, Visser P (1998) Precise orbit determination and gravity field improvement for the ERS satellites. J Geophys Res 103(C4):8113–8127CrossRefGoogle Scholar
  66. Segall P (1989) Earthquakes triggered by fluid extraction. Geology 17(10):942–946CrossRefGoogle Scholar
  67. Suárez-Vidal F, Munguia-Orozco L, Gonzalez-Escobar M, Gonzalez-Garcia J, Glowacka E (2007) Surface rupture of the Morelia fault near the Cerro Prieto geothermal field, Mexicali, Baja California, Mexico, during the Mw 5.4 Earthquake of 24 May 2006. Seismol Res Lett 78(3):394–399CrossRefGoogle Scholar
  68. Suárez-Vidal F, Mendoza-Borunda R, Nafarrete-Zamarripa L, Rámirez J, Glowacka E (2008) Shape and dimensions of the Cerro Prieto pull-apart basin, Mexicali, Baja California, México, based on the regional seismic record and surface structures. Int Geol Rev 50(7):636–649CrossRefGoogle Scholar
  69. Terres R, Crowell JC (1979) Plate tectonic framework of the San Andreas-Salton trough juncture. In: Crowell JC, Sylvester AG (eds) Tectonics of the juncture between the San Andreas fault system and the Salton Trough, Southeastern California: Department of Geological Sciences, University of California Santa Barbara, pp 15–26Google Scholar
  70. Truesdell A, Thompson JM, Copley TB, Nehring NL, Janik CJ (1981) The origin of the Cerro Prieto geothermal brine. Geothermics 10:225–238CrossRefGoogle Scholar
  71. Truesdell A, Lippmann M, Rodríguez M, Pérez A (2003) Influence of reservoir processes on gas in Cerro Prieto steam. Geotherm Res Counc Trans 27:335–340Google Scholar
  72. Trugman DT, Borsa AA, Sandwell DT (2014) Did stresses from the Cerro Prieto geothermal field influence the El Mayor-Cucapah rupture sequence? Geophys Res Lett. Google Scholar
  73. Velasco J (1963) Levantamiento Gravimétrico, Zona Geotérmica de Mexicali. Baja California. Reporte Interno, Consejo de Recursos Naturales no Renovables, p 55Google Scholar
  74. Wegmuller U, Werner CL (1997) Gamma SAR processor and interferometry software. In: Proceedings of 3rd ERS symposium, European Space Agency special publications, ESA SP-414, pp 1686–1692Google Scholar
  75. Werner C, Wegmuller U, Strozzi T, Wiesmann A (2000) Gamma SAR and interferometric processing software. In: Proceedings of ERS-ENVISAT symposium, European Space Agency, Gothenberg, SwedenGoogle Scholar
  76. Werner C, Wegmuller U, Strozzi T, Wiesmann A (2003) Interferometric point target analysis for deformation mapping. Proc Geosci Remote Sens Symp 7:4362–4364Google Scholar
  77. Wright T, Parsons B, Fielding E (2001) Measurement of interseismic strain accumulation across the North Anatolian Fault by satellite radar interferometry. Geophys Res Lett 28:2117–2120. CrossRefGoogle Scholar
  78. Wright TJ, Parsons B, England PC, Fielding EJ (2004a) InSAR observations of low slip rates on the major faults of western Tibet. Science 305:236–239. CrossRefGoogle Scholar
  79. Wright TJ, Parsons BE, Lu Z (2004b) Towards mapping surface deformation in three dimensions using InSAR. Geophys Res Lett. Google Scholar
  80. Zandbergen R, Otten M, Righetti PL, Kuijper D, Dow JM (2003) Routine operational and high-precision orbit determination of Envisat. Adv Space Res 31:1953–1958CrossRefGoogle Scholar
  81. Zebker HA, Villasenor J (1992) Decorrelation in interferometric radar echoes. IEEET Geosci Remote 30:950–959CrossRefGoogle Scholar
  82. Zebker HA, Rosen PA, Hensley S (1997) Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps. J Geophys Res 102(B4):7547–7563CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.División de Ciencias de la TierraCICESEEnsenadaMexico
  2. 2.Instituto Mexicano de Tecnología del Agua (IMTA)JiutepecMexico

Personalised recommendations