Natural Hazards

, Volume 91, Issue 2, pp 697–715 | Cite as

Flood modelling improvement using automatic calibration of two dimensional river software SRH-2D

Original Paper
  • 70 Downloads

Abstract

River model calibration is essential for reliable model prediction. The manual calibration method is laborious and time-consuming and requires expert knowledge. River engineering software is now equipped with more complex tools that require a high number of parameters as input, rendering the task of model calibration even more difficult. This paper presents the calibration tool O.P.P.S. (Optimisation Program for PEST and SRH-2D) and then uses it in multiple calibration scenarios. O.P.P.S. combines PEST, a calibration software and SRH-2D, a bi-dimensional hydraulic and sediment model for river systems, into an easy-to-use set of forms. O.P.P.S is designed to minimise the user’s interaction with the involved program to carry out rapid and functional calibration processes. PEST uses the Gauss–Marquardt–Levenberg algorithm to adjust the model’s parameters by minimising an objective function containing the differences between field observation and model-generated values. The tool is used to conduct multiple calibration series of the modelled Ha! Ha! river in Québec, with varying information content in the observation fields. A sensitivity study is also conducted to assess the behaviour of the calibration process in the presence of erroneous or imprecise measurements.

Keywords

River modelling Automatic calibration Parameter estimation SRH-2D PEST 

Notes

Acknowledgements

This research was supported in part by a National Science and Engineering Research Council (NSERC) Discovery Grant, application No: RGPIN-2016-06413.

References

  1. Aquaveo (2013) SMS User Manual, Surface-water Modeling System (v11.1)Google Scholar
  2. Bahremand A, De Smedt F (2010) Predictive analysis and simulation uncertainty of a distributed hydrological model. Water Resour Manag 24(12):2869–2880.  https://doi.org/10.1007/s11269-010-9584-1 CrossRefGoogle Scholar
  3. Beven K, Freer J (2001) Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology. J Hydrol 249(1):11–29CrossRefGoogle Scholar
  4. Boyle DP, Gupta HV, Sorooshian S (2000) Toward improved calibration of hydrologic models: combining the strengths of manual and automatic methods. Water Resour Res 36(12):3663–3674CrossRefGoogle Scholar
  5. Capart H, Spinewine B, Yougn DL, Zech Y, Brooks GR, Leclerc M, Secretan Y (2007) The 1996 Lake Ha! Ha! breakout flood, Quebec: test data for geomorphic flood routing methods. J Hydraul Res 45:97–109CrossRefGoogle Scholar
  6. Diaz-Ramirez JN, McAnally WH, Martin JL (2012) Sensitivity of simulating hydrologic processes to gauge and radar rainfall data in subtropical coastal catchments. Water Resour Manag 26(12):3515–3538.  https://doi.org/10.1007/s11269-012-0088-z CrossRefGoogle Scholar
  7. Doherty J (2010) PEST, model-independant parameter estimation user manuel, 5th edn. Watermark Numerical ComputingGoogle Scholar
  8. Duan Q, Sorooshian S, Gupta V (1992) Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resour Res 28(4):1015–1031CrossRefGoogle Scholar
  9. Ellis RJ, Doherty J, Searle RD, Moodie K (2009) Applying PEST (Parameter ESTimation) to improve parameter estimation and uncertainty analysis in WaterCAST models. Paper presented at the 18th World IMACS Congress and MODSIM09 International Congress on Modelling and Simulation: Interfacing Modelling and Simulation with Mathematical and Computational Sciences, Cains, Australia. http://mssanz.org.au/modsim09
  10. Fabio P, Aronica GT, Apel H (2010) Towards automatic calibration of 2-D flood propagation models. Hydrol Earth Syst Sci 14(6):911–924.  https://doi.org/10.5194/hess-14-911-2010 CrossRefGoogle Scholar
  11. Gonzalez P (2016) Modélisation de la propagation des inondations en zone urbaine. Master, Université de Montréal, École Polytechnique de MontréalGoogle Scholar
  12. Hall JW, Tarantola S, Bates PD, Horritt M (2005) Distributed sensitivity analysis of flood inundation model calibration. J Hydraul Eng 131(2):117–126.  https://doi.org/10.1061/(ASCE)0733-9429(2005)131:2(117) CrossRefGoogle Scholar
  13. Kim SM, Benham BL, Brannan KM, Zeckoski RW, Doherty J (2007) Comparison of hydrologic calibration of HSPF using automatic and manual methods. Water Resour Res.  https://doi.org/10.1029/2006wr004883 Google Scholar
  14. Lai YG (2008) SRH-2D version 2: Theory and User’s Manuel: U.S. Department of the Interior Bureau of Reclamation Technical Service Center Denver, ColoradoGoogle Scholar
  15. Lai YG (2009) Two-dimensional depth-averaged flow modeling with an unstructured hybrid mesh. J Hydraul Eng 136(1):12–23CrossRefGoogle Scholar
  16. Lavoie B, Mahdi T-F (2016) Comparison of two-dimensional flood propagation models: SRH-2D and Hydro_AS-2D. Nat Hazards 86(3):1207–1222.  https://doi.org/10.1007/s11069-016-2737-7 CrossRefGoogle Scholar
  17. McCloskey G, Ellis R, Waters D, Stewart J (2011) PEST hydrology calibration process for source catchments–applied to the Great Barrier Reef, Queensland. Paper presented at the 19th International Congress on Modeling and Simulation, Perth, AustraliaGoogle Scholar
  18. McKibbon J, Mahdi T-F (2010) Automatic calibration tool for river models based on the MHYSER software. Nat Hazards 54(3):879–899.  https://doi.org/10.1007/s11069-010-9512-y CrossRefGoogle Scholar
  19. Pappenberger F, Beven K, Horritt M, Blazkova S (2005) Uncertainty in the calibration of effective roughness parameters in HEC-RAS using inundation and downstream level observations. J Hydrol 302(1–4):46–69.  https://doi.org/10.1016/j.jhydrol.2004.06.036 CrossRefGoogle Scholar
  20. Pappenberger F, Beven K, Frodsham K, Romanowicz R, Matgen P (2007) Grasping the unavoidable subjectivity in calibration of flood inundation models: a vulnerability weighted approach. J Hydrol 333(2):275–287CrossRefGoogle Scholar
  21. Pathak CS, Teegavarapu RS, Olson C, Singh A, Lal AW, Polatel C, Senarath SU (2015) Uncertainty analyses in hydrologic/hydraulic modeling: challenges and proposed resolutions. J Hydrol Eng 20(10):02515003CrossRefGoogle Scholar
  22. Rode M, Suhr U, Wriedt G (2007) Multi-objective calibration of a river water quality model—information content of calibration data. Ecol Model 204(1):129–142CrossRefGoogle Scholar
  23. Vidal JP, Moisan S, Faure JB, Dartus D (2007) River model calibration, from guidelines to operational support tools. Environ Model Softw 22(11):1628–1640.  https://doi.org/10.1016/j.envost.2006.12.003 CrossRefGoogle Scholar
  24. Warmink JJ, van der Klis H, Booij MJ, Hulscher SJMH (2009) Quantification of uncertainties in a 2D hydraulic model for the Dutch river Rhine using expert opinions. In: Lopez Jimenez PA (ed) Environmental hydraulics. Theoretical, experimental and computational solutions. Proceedings of the international workshop on environmental hydraulics, IWEH09, 29–30 October 2009, Valencia, Spain. CRC, London, pp 195–198Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Département des génies Civil, Géologique et des Mines (CGM)École Polytechnique de MontréalMontréalCanada

Personalised recommendations