Natural Hazards

, Volume 91, Issue 2, pp 553–566 | Cite as

A potential predictor of multi-season droughts in Southwest China: soil moisture and its memory

  • Chujie Gao
  • Haishan Chen
  • Shanlei Sun
  • Victor Ongoma
  • Wenjian Hua
  • Hedi Ma
  • Bei Xu
  • Yang Li
Original Paper

Abstract

During the last decade, several high intensity and long duration droughts happened in Southwest China (SWC) and resulted in tremendous socioeconomic losses. Meanwhile, it is well known that soil moisture (SM) plays a key role in land–atmosphere interaction and weather/climate prediction and is a direct drought index. Thus, a general analysis of SM is beneficial to drought research and prediction over this region. Based on the SM data of Global Land Data Assimilation System V2.0, we examined the temporal variations in SM in SWC during 1961–2012. Results show that significant soil drying trend happened in autumn accompanied by an evident abrupt change in 1991. Moreover, SM exhibits a strong and season-dependent persistence. Particularly, the autumn SM anomaly shows the strongest memory that can be sustained to the next spring. Along with the decadal shift of SM, the memory time of autumn SM can extend from 3 months before 1991 to 6 months in recent years. We further used the Standardized Precipitation Evapotranspiration Index (SPEI) at multiple time scales to identify the droughts in different seasons over SWC, and the inter-annual change patterns of autumn SM and SPEIs are generally in agreement with each other, which confirms that SM is suitable for indicating the droughts. Our results suggest that the autumn SM can be a potential predictor of persistent droughts over SWC, especially for those multi-season persistent drought events started in autumn.

Keywords

Drought Soil moisture Memory Southwest China 

Notes

Acknowledgements

This work was jointly supported by the National Natural Science Foundation of China (41230422 and 41605042), the Natural Science Foundation of Jiangsu Province, China (BK20130047, BK20151525 and BK20160948), the Special Fund for Research in the Public Interest of China (GYHY201406020), the Natural Science Foundation for Higher Education Institutions in Jiangsu Province (16KJB170007) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). The GLDAS dataset can be downloaded at the site: https://disc.sci.gsfc.nasa.gov/uui/datasets. The SPEI database is freely accessible online at the site: http://sac.csic.es/spei/database.html.

References

  1. Barriopedro D, Gouveia CM, Trigo RM et al (2012) The 2009/10 drought in China: possible causes and impacts on vegetation. J Hydrometeorol 13:1251–1267.  https://doi.org/10.1175/jhm-d-11-074.1 CrossRefGoogle Scholar
  2. Berg AA, Famiglietti JS, Rodell M et al (2005) Development of a hydrometeorological forcing data set for global soil moisture estimation. Int J Climatol 25:1697–1714.  https://doi.org/10.1002/joc.1203 CrossRefGoogle Scholar
  3. Chen H, Jia G, Feng J et al (2014) Increased browning of woody vegetation due to continuous seasonal droughts in Yunnan province, China. Atmos Oceanic Sci Lett 7:120–125.  https://doi.org/10.3878/j.issn.1674-2834.13.0070 CrossRefGoogle Scholar
  4. Cheng S, Huang J (2016) Enhanced soil moisture drying in transitional regions under a warming climate. J Geophys Res Atmos 121:2542–2555.  https://doi.org/10.1002/2015JD024559 CrossRefGoogle Scholar
  5. Dai A (2011) Drought under global warming: a review. Wires Clim Change 2:45–65.  https://doi.org/10.1002/wcc.81 CrossRefGoogle Scholar
  6. Dirmeyer PA, Schlosser CA, Brubaker KL (2009) Precipitation, recycling, and land memory: an intergrated analysis. J Hydrometeorol 10:278–288.  https://doi.org/10.1175/2008JHM1016.1 CrossRefGoogle Scholar
  7. Ek MB, Mitchell KE, Lin Y et al (2003) Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J Geophys Res.  https://doi.org/10.1029/2002jd003296 Google Scholar
  8. Feng L, Li T, Yu W (2014) Cause of severe droughts in Southwest China during 1951–2010. Clim Dyn 43:2033–2042.  https://doi.org/10.1007/s00382-013-2026-z CrossRefGoogle Scholar
  9. Fu X, Svoboda M, Tang Z et al (2013) An overview of US state drought plans: crisis or risk management? Nat Hazards 69:1607–1627.  https://doi.org/10.1007/s11069-013-0766-z CrossRefGoogle Scholar
  10. Hu X, Wang S, Xu P et al (2014) Analysis on causes of continuous drought in Southwest China during 2009–2013. Meteor Mon 40:1216–1229.  https://doi.org/10.7519/j.issn.1000-0526.2014.10.006 (in Chinese with English Abstract) Google Scholar
  11. Huang R, Liu Y, Wang L et al (2012) Analyses of the causes of severe drought occurring in Southwest China from the fall of 2009 to the spring of 2010. Chin J Atmos Sci 36:443–457.  https://doi.org/10.3878/j.issn.1006-9895.2011.11111 (in Chinese with English Abstract) Google Scholar
  12. Koster RD, Suarez MJ (2001) Soil moisture memory on climate models. J Hydrometeorol 2:558–570.  https://doi.org/10.1175/1525-7541(2001)002<0558:SMMICM>2.0.CO;2 CrossRefGoogle Scholar
  13. Li Y, Xu H, Liu D (2009) Features of the extremely severe drought in the east of Southwest China and anomalies of atmospheric circulation in summer 2006. Acta Meteorol Sin 67:122–132.  https://doi.org/10.11676/qxxb2009.013 (in Chinese with English Abstract) Google Scholar
  14. Liu Y, Zhao E, Peng G et al (2007) Severe drought in the early summer of 2005 in Yunnan and middle-high latitudes circulation. Arid Meteorol 25:32–37.  https://doi.org/10.3969/j.issn.1006-7639.2007.01.006 (in Chinese with English Abstract) Google Scholar
  15. Liu K, Jiang D, Ma J (2012) Drought over China in the 21st century: results of RegCM3. Atmos Ocean Sci Lett 5:509–513.  https://doi.org/10.1080/16742834.2012.11447037 Google Scholar
  16. Ma ZF, Liu J, Yang SQ (2013) Climate change in southwest China during 1961–2010: impacts and adaptation. Adv Clim Change Res 4:223–229.  https://doi.org/10.3724/sp.j.1248.2013.223 CrossRefGoogle Scholar
  17. Mahanama SPP, Koster RD (2003) Intercomparison of soil moisture memory in two land surface models. J Hydrometeorol 4:1134–1146.  https://doi.org/10.1175/1525-7541(2003)004<1134:IOSMMI>2.0.CO;2 CrossRefGoogle Scholar
  18. McKee TB, Doesken NJ, Kleist J (1993) The relationship of drought frequency and duration to time scales. In: Eighth conference on applied climatology, Anaheim, CA, 17–22 January, American Meteor Society, pp 179–184Google Scholar
  19. Nie S, Luo Y, Zhu J (2008) Trends and scales of observed soil moisture variations in China. Adv Atmos Sci 25(1):43–58.  https://doi.org/10.1007/s00376-008-0043-3 CrossRefGoogle Scholar
  20. Palmer WC (1965) Meteorological drought. Research paper no. 45, Washigton, DC, U.S. Department of Commerce, Weather Bureau, pp 1–58Google Scholar
  21. Qiu J (2010) China drought highlights future climate threats. Nature 465:142–143.  https://doi.org/10.1038/465142a CrossRefGoogle Scholar
  22. Rahman MM, Lu M, Kyi KH (2015) Variability of soil moisture memory for wet and dry basins. J Hydrol 523:107–118.  https://doi.org/10.1016/j.jhydrol.2015.01.033 CrossRefGoogle Scholar
  23. Robock A, Li H (2006) Solar dimming and CO2 effects on soil moisture trends. Geophys Res Lett 33:L20708.  https://doi.org/10.1029/2006gl027585 CrossRefGoogle Scholar
  24. Rodell M, Houser PR, Jambor U et al (2004) The global land data assimilation system. Bull Am Meteorol Soc 85:381–394.  https://doi.org/10.1175/bams-85-3-381 CrossRefGoogle Scholar
  25. Rohli RV, Bushra N, Lam NSN et al (2016) Drought indices as drought predictors in the south-central USA. Nat Hazards 83:1567–1582.  https://doi.org/10.1007/s11069-016-2376-z Google Scholar
  26. Ruscica RC, Sörensson AA, Menéndez CG (2014) Hydrological links in Southeastern South America: soil moisture memory and coupling within a hot spot. Int J Climatol 34:3641–3653.  https://doi.org/10.1002/joc.3930 CrossRefGoogle Scholar
  27. Seneviratne SI, Lüthi D, Litschi M et al (2006a) Land–atmosphere coupling and climate change in Europe. Nature 443:205–209.  https://doi.org/10.1038/nature05095 CrossRefGoogle Scholar
  28. Seneviratne SI, Koster RD, Guo Z et al (2006b) Soil moisture memory in AGCM simulations: analysis of global land–atmosphere coupling experiment (GLACE) data. J Hydrometeorol 7:1090–1112.  https://doi.org/10.1175/JHM533.1 CrossRefGoogle Scholar
  29. Sha T, Xu H, Zou S (2013) Atmospheric circulation characteristics and cause analysis for autumn drought in the eastern region of Southwest China. Trans Atmos Sci 36:593–603.  https://doi.org/10.3969/j.issn.1674-7097.2013.05.010 (in Chinese with English Abstract) Google Scholar
  30. Sheffield J, Goteti G, Wood EF (2006) Delelopment of a 50-year-high-resolution global dataset of meteorological forcing for land surface modeling. J Clim 19:3088–3111.  https://doi.org/10.1175/JCLI3790.1 CrossRefGoogle Scholar
  31. Spennemann PC, Saulo AC (2015) An estimation of the land–atmosphere coupling strength in South America using the Global Land Data Assimilation System. Int J Climatol 35:4151–4166.  https://doi.org/10.1002/joc.4274 CrossRefGoogle Scholar
  32. Sun S, Chen H, Ju W et al (2016) On the coupling between precipitation and potential evapotranspiration: contributions to decadal drought anomalies in the Southwest China. Clim Dyn 48:3779–3797.  https://doi.org/10.1007/s00382-016-3302-5 CrossRefGoogle Scholar
  33. Sun S, Chen H, Sun G et al (2017) Attributing the changes in reference evapotranspiration in Southwestern China using a new separation method. J Hydrometeorol 18:777–798.  https://doi.org/10.1175/jhm-d-16-0118.1 CrossRefGoogle Scholar
  34. Tang J, Cheng H, Liu L (2014) Assessing the recent droughts in Southwestern China using satellite gravimetry. Water Resour Res 50:3030–3038.  https://doi.org/10.1002/2013WR014656 CrossRefGoogle Scholar
  35. Vicente-Serrano SM, Beguería S, López-Moreno JI (2010) A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J Climate 23:1696–1718.  https://doi.org/10.1175/2009jcli2909.1 CrossRefGoogle Scholar
  36. von Storch H, Zwiers FW (1999) Statistical analysis in climate research. Cambridge University Press, Cambridge, pp 371–374CrossRefGoogle Scholar
  37. Wang L, Chen W (2014) Applicability analysis of Standardized Precipitation Evapotranspiration Index in drought monitoring in China. Plateau Meteorol 33:423–431.  https://doi.org/10.7522/j.issn.1000-0543.2013.00048 (in Chinese with English Abstract) Google Scholar
  38. Wang J, Meng Y (2013) An analysis of the drought in Yunnan, China, from a perspective of society drought severity. Nat Hazards 67:431–458.  https://doi.org/10.1007/s11069-013-0572-7 CrossRefGoogle Scholar
  39. Wang D, Zhang B, An M et al (2014a) Temporal and spatial distributions of drought in Southwest China over the past 53 years based on Standardized Precipitation Evapotranspiration Index. J Nat Res 29:1003–1016.  https://doi.org/10.11849/zrzyxb.2014.06.009 (in Chinese with English Abstract) Google Scholar
  40. Wang L, Chen W, Zhou W (2014b) Assessment of future drought in Southwest China based on CMIP5 multimodel projections. Adv Atmos Sci 31:1035–1050.  https://doi.org/10.1007/s00376-014-3223-3 CrossRefGoogle Scholar
  41. Wang L, Chen W, Zhou W et al (2015) Drought in Southwest China: a review. Atmos Ocean Sci Lett 8:339–344.  https://doi.org/10.3878/AOSL20150043 Google Scholar
  42. Wang L, Chen W, Zhou W et al (2016) Understanding and detecting super-extreme droughts in Southwest China through an integrated approach and index. Q J R Meteorol Soc 142:529–535.  https://doi.org/10.1002/qj.2593 CrossRefGoogle Scholar
  43. Wen QH, Zhang X, Xu Y et al (2013) Detecting human influence on extreme temperatures in China. Geophys Res Lett 40:1171–1176.  https://doi.org/10.1002/grl.50285 CrossRefGoogle Scholar
  44. Wu L, Zhang J (2014) Strong subsurface soil temperature feedbacks on summer climate variability over the arid/semi-arid regions of East Asia. Atmos Sci Lett 15:307–313.  https://doi.org/10.1002/asl2.504 Google Scholar
  45. Wu L, Zhang J (2015) The relationship between spring soil moisture and summer hot extremes over North China. Adv Atmos Sci 32:1660–1668.  https://doi.org/10.1007/s00376-015-5003-0 CrossRefGoogle Scholar
  46. Xu D, Li D, Qu Q et al (2013) The spatio-temporal variation of autumn dry-wet condition in Southwest China and analysis of its possible causes. J Trop Meteorol 29:570–580.  https://doi.org/10.3969/j.issn.1004-4965.2013.04.005 (in Chinese with English Abstract) Google Scholar
  47. Yan H, Duan X, Cheng J (2007) Study on a severe drought event over Yunnan in spring 2005. J Trop Meteorol 23:300–306.  https://doi.org/10.16032/j.issn.1004-4965.2007.03.013 (in Chinese with English Abstract) Google Scholar
  48. Yan H, Cheng J, Zheng J et al (2012) The climate cause of heavy drought in Yunnan in autumn 2009. Trans Atmos Sci 35:229–239.  https://doi.org/10.13878/j.cnki.dqkxxb.2012.02.011 (in Chinese with English Abstract) Google Scholar
  49. Yang K, Zhang J (2015) Spatiotemporal characteristics of soil temperature memory in China from observation. Theor Appl Climatol 126:739–749.  https://doi.org/10.1007/s00704-015-1613-9 CrossRefGoogle Scholar
  50. Yang J, Gong D, Wang W et al (2012) Extreme drought event of 2009/2010 over southwestern China. Meteorol Atmos Phys 115:173–184.  https://doi.org/10.1007/s00703-011-0172-6 CrossRefGoogle Scholar
  51. Yin H, Li Y (2013) Summary of advance on drought study in Southwest China. J Arid Meteorol 31:182–193.  https://doi.org/10.11755/j.issn.1006-7639(2013)-01-0182 (in Chinese with English Abstract) Google Scholar
  52. Zhang J, Wu L (2011) Land–atmosphere coupling amplifies hot extremes over China. Chin Sci Bull 56:3328–3332.  https://doi.org/10.1007/s11434-011-4628-3 CrossRefGoogle Scholar
  53. Zhang XQ, Yamaguchi Y (2014) Characterization and evaluation of MODIS-derived Drought Severity Index (DSI) for monitoring the 2009/2010 drought over southwestern China. Nat Hazards 74:2129–2145.  https://doi.org/10.1007/s11069-014-1278-1 CrossRefGoogle Scholar
  54. Zhang J, Wang W-C, Wei J (2008) Assessing land–atmosphere coupling using soil moisture from the Global Land Data Assimilation System and observational precipitation. J Geophys Res 113:D17119.  https://doi.org/10.1029/2008jd009807 CrossRefGoogle Scholar
  55. Zhang M, He J, Wang B et al (2013) Extreme drought changes in Southwest China from 1960 to 2009. J Geogr Sci 23:3–16.  https://doi.org/10.1007/s11442-013-0989-7 CrossRefGoogle Scholar
  56. Zhang W, Zhang J, Fan G (2014) Dominant modes of dry- and wet-season precipitation in southwestern China. Chin J Atmos Sci 38:590–602.  https://doi.org/10.3878/j.issn.1006-9895.2013.13156 (in Chinese with English Abstract) Google Scholar
  57. Zhang G, Zeng G, Ni D et al (2016) Decadal shift of autumn drought in Southwest China and its possible causes. Chin J Atmos Sci 40:311–323.  https://doi.org/10.3878/j.issn.1006-9895.1503.14294 (in Chinese with English Abstract) Google Scholar
  58. Zou X, Gao H (2007) Analysis of severe drought and heat wave over the Sichuan basin in the summer of 2006. Adv Clim Change Res 3:149–153.  https://doi.org/10.3969/j.issn.1673-1719.2007.03.005 (in Chinese with English Abstract) Google Scholar
  59. Zuo Z, Zhang R (2009) Temporal and spatial features of the soil moisture in boreal spring in eastern China. Sci China D Earth Sci 52:269–278.  https://doi.org/10.1007/s11430-009-0011-5 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  • Chujie Gao
    • 1
    • 2
  • Haishan Chen
    • 1
    • 2
  • Shanlei Sun
    • 1
    • 2
  • Victor Ongoma
    • 3
  • Wenjian Hua
    • 1
    • 2
  • Hedi Ma
    • 1
    • 2
  • Bei Xu
    • 1
    • 2
  • Yang Li
    • 4
  1. 1.Key Laboratory of Meteorological Disaster, Ministry of Education (KLME)/International Joint Research Laboratory of Climate and Environment Change (ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD)Nanjing University of Information Science and Technology (NUIST)NanjingChina
  2. 2.College of Atmospheric ScienceNUISTNanjingChina
  3. 3.Department of MeteorologySouth Eastern Kenya UniversityKituiKenya
  4. 4.Jiangsu Meteorological ObservatoryNanjingChina

Personalised recommendations