Natural Hazards

, Volume 86, Issue 3, pp 1275–1290 | Cite as

A geospatial analysis of Samudra Tapu and Gepang Gath glacial lakes in the Chandra Basin, Western Himalaya

  • Lavkush Kumar Patel
  • Parmanand Sharma
  • C. M. Laluraj
  • Meloth Thamban
  • Ajit Singh
  • Rasik Ravindra
Original Paper


Geospatial studies carried out in two major proglacial lakes of Samudra Tapu and Gepang Gath (Chandra Basin, Western Himalaya) showed substantial expansion in their area and volume over the last four decades (1971–2014). The linear and areal expansions for the lakes Samudra Tapu and Gepang Gath were 1889, 1509 m and 1, 0.6 km2, respectively. The results show that increased melting of the feeder glaciers over this period is major contributor to expand the volumes approximately 20 times of both the lakes Samudra Tapu and Gepang Gath. This expansion of lakes volume of Samudra Tapu and Gepang Gath from 3.4 × 106 to 67.7 × 106 and 1.5 × 106 to 27.5 × 106 m3, respectively, is quite significance in terms of hazards generated from glacial lake outburst floods (GLOF). This kind of climate change induced increase in the rate of glacial melting is a cause of concern, as the Himalaya Mountains may turn out to be vulnerable to natural hazards like GLOF.


Geospatial techniques Proglacial lakes Glacial lake outburst floods Chandra Basin Himalaya 



We thank Director, ESSO-National Centre for Antarctica and Ocean Research, Goa, for continued support. The National Remote Sensing Centre, Hyderabad, India, is acknowledged for Indian Remote Sensing satellite Images and US Geological Survey (USGS) for Declassified Corona Images, Landsat images and ASTER GDEM V2 data sets. We thank our field logistic team who were involved in our field trips. We Thank to Dr. K. K. Balachandran and anonymous reviewer for editing, and useful suggestions and comments. This is NCAOR Contribution No. 01/2017.


  1. Anacona IP, Norton K, Mackintosh A (2014) Moraine-dammed lake failures in Patagonia and assessment of outburst susceptibility in the Baker Basin. Nat Hazards Earth Syst Sci 14:3243–3259. doi: 10.5194/nhess-14-3243-2014 CrossRefGoogle Scholar
  2. Bajracharya SR, Mool P (2009) Glaciers, glacial lakes and glacial lake outburst floods in the Mount Everest region, Nepal. Ann Glaciol 50:81–86. doi: 10.3189/172756410790595895 CrossRefGoogle Scholar
  3. Benn DI, Wiseman S, Warren CR (2000) Rapid growth of a supraglacial lake, Ngozumpa Glacier, Khumbu Himal, Nepal, vol 264. IAHS, Wallingford, pp 177–183Google Scholar
  4. Bhambri R, Bolch T, Chaujar RK (2012) Frontal recession of Gangotri Glacier, Garhwal Himalayas, from 1965 to 2006, measured through high-resolution remote sensing data. Curr Sci 102:489–494Google Scholar
  5. Bhambri R, Mehta M, Dobhal DP, Gupta AK et al (2015) Devastation in the Kedarnath (Mandakini) Valley, Garhwal Himalaya, during 16–17 June 2013: a remote sensing and ground-based assessment. Nat Hazards. doi: 10.1007/s11069-015-2033-y Google Scholar
  6. Bhutiyani MR, Kale VS, Pawar NJ (2007) Long-term trends in maximum, minimum and mean annual air temperatures across the NorthWestern Himalaya during the twentieth century. Clim Change 85:159–177. doi: 10.1007/s10584-006-9196-1 CrossRefGoogle Scholar
  7. Bolch T, Peters J, Yegorov A et al (2011) Identification of potentially dangerous glacial lakes in the northern Tien Shan. Nat Hazards 59:1691–1714. doi: 10.1007/s11069-011-9860-2 CrossRefGoogle Scholar
  8. Carrivick JL, Tweed FS (2013) Proglacial lakes: character, behaviour and geological importance. Quat Sci Rev 78:34–52. doi: 10.1016/j.quascirev.2013.07.028 CrossRefGoogle Scholar
  9. Chaohai L, Sharma CK (1988) Report on first expedition to glaciers in the Pumqu (Arun) and Poiqu (Bhote-Sun Kosi) river basins, Xizang (Tibet). Science Press, BeijingGoogle Scholar
  10. Daoming X, Qinghua F (1994) Dangerous glacier lakes and their outburst features in the Tibetan Himalayas. Bull Glacier Res 12:1–8Google Scholar
  11. Evans SG (1986) Landslide damming in the Cordillera of Western Canada. Seattle, Washington, pp 111–130Google Scholar
  12. Gardelle J, Arnaud Y, Berthier E (2011) Contrasted evolution of glacial lakes along the Hindu Kush Himalaya mountain range between 1990 and 2009. Glob Planet Change 75:47–55. doi: 10.1016/j.gloplacha.2010.10.003 CrossRefGoogle Scholar
  13. Govindha Raj KB (2010) Remote sensing based hazard assessment of glacial lakes: a case study in Zanskar basin, Jammu and Kashmir, India. Geomat Nat Hazards Risk 1:339–347. doi: 10.1080/19475705.2010.532973 CrossRefGoogle Scholar
  14. Govindha Raj KB, Kumar VK (2013) Glacial lakes in Uttarakhand—a remote sensing based inventory. National Remote Sensing Centre, ISRO, HyderabadGoogle Scholar
  15. Govindha Raj KB, Kumar VK, Remya SN (2012) Remote sensing-based inventory of glacial lakes in Sikkim Himalaya: semi-automated approach using satellite data. Geomat Nat Hazards Risk. doi: 10.1080/19475705.2012.707153 Google Scholar
  16. Hambrey MJ, Quincey DJ, Glasser NF et al (2008) Sedimentological, geomorphological and dynamic context of debris-mantled glaciers, Mount Everest (Sagarmatha) region, Nepal. Quat Sci Rev 27:2361–2389. doi: 10.1016/j.quascirev.2009.04.009 CrossRefGoogle Scholar
  17. Huggel C, Kääb A, Haeberli W et al (2002) Remote sensing based assessment of hazards from glacier lake outbursts: a case study in the Swiss Alps. Can Geotech J 39:316–330. doi: 10.1139/t01-09 CrossRefGoogle Scholar
  18. Huggel C, Kääb A, Haeberli W, Krummenacher B (2003) Regional-scale GIS-models for assessment of hazards from glacier lake outbursts: evaluation and application in the Swiss Alps. Nat Hazards Earth Syst Sci 3:647–662. doi: 10.5194/nhess-3-647-2003 CrossRefGoogle Scholar
  19. Huggel C, Haeberli W, Kääb A et al (2004) An assessment procedure for glacial hazards in the Swiss Alps. Can Geotech J 41:1068–1083. doi: 10.1139/t04-053 CrossRefGoogle Scholar
  20. ICIMOD (2011) Glacial lakes and glacial lake outburst floods in Nepal. ICIMOD, Patan. ISBN 978-92-9115-193-6Google Scholar
  21. Klimeš J, Benešová M, Vilímek V et al (2013) The reconstruction of a glacial lake outburst flood using HEC-RAS and its significance for future hazard assessments: an example from Lake 513 in the Cordillera Blanca, Peru. Nat Hazards 71:1617–1638. doi: 10.1007/s11069-013-0968-4 CrossRefGoogle Scholar
  22. Komori J (2008) Recent expansions of glacial lakes in the Bhutan Himalayas. Quat Int 184:177–186. doi: 10.1016/j.quaint.2007.09.012 CrossRefGoogle Scholar
  23. Kulkarni AV, Karyakarte Y (2014) Observed changes in Himalayan glaciers. Curr Sci 106:237–244Google Scholar
  24. Mool PK, Wanda D, Bajracharya SR, Kunzang K, Joshi SP (2001) Inventory of glaciers, glacial lakes and glacial lake outburst floods. Monitoring and early warning systems in the Hindu Kush-Himalayan Region Bhutan. ICIMOD and UNDP- ERA-APGoogle Scholar
  25. O’Connor JE, Hardison III JH, Costa JE (2001) Debris flows from failures of Neoglacial-age moraine dams in the Three Sisters and Mount Jefferson Wilderness areas, Oregon. USGS Professional Paper 1606, p 105Google Scholar
  26. Patel LK, Sharma P, Thamban M et al (2016) Debris control on glacier thinning—a case study of the Batal glacier, Chandra basin, Western Himalaya. Arab J Geosci 9:309. doi: 10.1007/s12517-016-2362-5 CrossRefGoogle Scholar
  27. Popov N (1991) Assessment of glacial debris flow hazard in the north Tien-Shan. In: Proceedings of the Soviet–China–Japan SYMPOSIUM and field workshop on natural disasters, 2–17 Sept 1991, pp 384–391Google Scholar
  28. Quincey DJ, Richardson SD, Luckman A et al (2007) Early recognition of glacial lake hazards in the Himalaya using remote sensing datasets. Glob Planet Change 56:137–152. doi: 10.1016/j.gloplacha.2006.07.013 CrossRefGoogle Scholar
  29. Randhawa SS, Sharma A (2013) A technical report on the inventory of moraine dammed glacial lakes (GLOFs) in Satluj, Beas, Chenab and Ravi Basins in Himachal Pradesh using IRS LISS III satellite data (2013). H.P. State Center on Climate Change (State Council for Science Technology & Environment), ShimlaGoogle Scholar
  30. Rathore BP, Singh SK, Brahmbhatt R et al (2015) Monitoring of moraine-dammed lakes: a remote sensing based study in the Western Himalaya. Curr Sci 109:1843–1849CrossRefGoogle Scholar
  31. Richardson SD, Reynolds JM (2000) An overview of glacial hazards in the Himalayas. Quat Int 65–66:31–47. doi: 10.1016/S1040-6182(99)00035-X CrossRefGoogle Scholar
  32. Sakai A (2012) Glacial lakes in the Himalayas: a review on formation and expansion processes. Glob Environ Res 16:23–30Google Scholar
  33. Schneider D, Huggel C, Cochachin A et al (2014) Mapping hazards from glacier lake outburst floods based on modelling of process cascades at Lake 513, Carhuaz, Peru. Adv Geosci 35:145–155. doi: 10.5194/adgeo-35-145-2014 CrossRefGoogle Scholar
  34. Sharma P, Ramanathan AL, Pottakkal J (2013) Study of solute sources and evolution of hydrogeochemical processes of the Chhota Shigri Glacier meltwaters, Himachal Himalaya, India. Hydrol Sci J 58:1128–1143. doi: 10.1080/02626667.2013.802092 CrossRefGoogle Scholar
  35. Sharma P, Patel LK, Ravindra R et al (2016) Role of debris cover to control specific ablation of adjoining Batal and Sutri Dhaka glaciers in Chandra Basin (Himachal Pradesh) during peak ablation season. J Earth Syst Sci. doi: 10.1007/s12040-016-0681-2 Google Scholar
  36. Tachikawa T, Hato M, Kaku M, Iwasaki A (2011) Characteristics of ASTER GDEM version 2. In: International geosicence and remote sensing symposium, pp 3657–3660Google Scholar
  37. Thakuri S, Salerno F, Bolch T et al (2016) Factors controlling the accelerated expansion of Imja Lake, Mount Everest region, Nepal. Ann Glaciol 57:245–257. doi: 10.3189/2016AoG71A063 CrossRefGoogle Scholar
  38. Walder JS, O’Connor JE (1997) Methods for predicting peak discharge of floods caused by failure of natural and constructed earthen dams. Water Resour Res 33:2337–2348. doi: 10.1029/97WR01616 CrossRefGoogle Scholar
  39. Wang W, Yang X, Yao T (2012) Evaluation of ASTER GDEM and SRTM and their suitability in hydraulic modelling of a glacial lake outburst flood in southeast Tibet. Hydrol Process 26:213–225. doi: 10.1002/hyp.8127 CrossRefGoogle Scholar
  40. Worni R, Huggel C, Stoffel M (2013) Glacial lakes in the Indian Himalayas—from an area-wide glacial lake inventory to on-site and modeling based risk assessment of critical glacial lakes. Sci Total Environ 468–469:S71–S84. doi: 10.1016/j.scitotenv.2012.11.043 CrossRefGoogle Scholar
  41. Xin W, Shiyin L, Wanqin G, Junli X (2008) Assessment and simulation of glacier lake outburst floods for Longbasaba and Pida Lakes, China. Mt Res Dev 28:310–317. doi: 10.1659/mrd.0894 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Lavkush Kumar Patel
    • 1
  • Parmanand Sharma
    • 1
  • C. M. Laluraj
    • 1
  • Meloth Thamban
    • 1
  • Ajit Singh
    • 1
  • Rasik Ravindra
    • 2
  1. 1.ESSO-National Centre for Antarctic and Ocean Research, Ministry of Earth SciencesVasco da GamaIndia
  2. 2.Earth System Science Organization, Ministry of Earth Sciences (Government of India)New DelhiIndia

Personalised recommendations