Natural Hazards

, Volume 86, Issue 3, pp 1247–1273 | Cite as

Building damage assessment after the Riviera del Brenta tornado, northeast Italy

  • Mariano Angelo Zanini
  • Lorenzo Hofer
  • Flora Faleschini
  • Carlo Pellegrino
Original Paper


A tornado with severe intensity hit the municipalities of Pianiga, Dolo and Mira close to Venice, northeast Italy, causing damages on a wide number of residential and industrial buildings and destroying some historical villas. In this study, the authors show the results of the damage assessment survey performed in the first days after the occurrence of the extreme event. Limited literature deals with damage assessment of European building types due to wind actions, and the available one does not consider building vulnerability as key factor in the structural response of existing structures subject to tornado hazard. In this paper, structural damages surveyed in reinforced concrete frame structures and masonry buildings, representative of common Italian building types, are critically discussed. Additionally, this work provides a database of past tornado events in northeast Italy, evidencing how the analyzed area has been found to be quite prone to tornado hazard.


Building vulnerability Damage assessment Hazard Structural response Tornado 



Authors wish to thank Eng. Roberto Tonellato, Eng. Roberto Taranta and Eng. Luca Soppelsa from the Regione Veneto—Settore Protezione Civile, the Municipalities of Pianiga, Dolo and Mira, A.GE.PRO association and the local professional associations of Engineers and Architects. A particular thank to Eng. Daniele Cascella for his valuable help in data processing.


  1. Aglietti F (1793–1800) Memorie per Servire alla Storia Letteraria e CivileGoogle Scholar
  2. ARPAV (2015) Temporali intensi di mercoledì 8 luglio 2015 sul Veneto, ARPAV-Agenzia Regionale per la Prevenzione e Protezione Ambientale del VenetoGoogle Scholar
  3. Bechini R, Giaiotti DB, Manzato A, Stel F, Micheletti S (2001) The June 4th 1999 severe weather episode in San Quirino, Italy: A tornado event? Atmos Res 56:213–232CrossRefGoogle Scholar
  4. Bertato M, Giaiotti DB, Manzato A, Stel F (2003) An interesting case of tornado in Friuli-Northeastern Italy. Atmos Res 67–68:3–21CrossRefGoogle Scholar
  5. Bissolli P, Grieser J, Dotzek N, Welsch M (2007) Tornadoes in Germany 1950–2003 and their relation to particular weather conditions. Glob Planet Change 57(1–2):124–138CrossRefGoogle Scholar
  6. De Angelis A, Pecce M (2015) Seismic nonstructural vulnerability assessment in school buildings. Nat Hazards 79(2):1333–1358CrossRefGoogle Scholar
  7. Donà P (2015) Eventi meteorologici nel Veronese, UUID: cfc559c4-11e5-ba68-119a1b5d0361Google Scholar
  8. Doswell CA (2006) Thoughts on the new EF-scale: tornado rating consistency and the QRT., Accessed 24 Feb 2016
  9. Doswell CA III, Brooks HE, Dotzek N (2009) On the implementation of the enhanced Fujita scale in the USA. Atmos Res 93:554–563CrossRefGoogle Scholar
  10. Dotzek N (2001) Tornadoes in Germany. Atmos Res 56(1–4):233–251CrossRefGoogle Scholar
  11. Dotzek N (2003) An updated estimate of tornado occurrence in Europe. Atmos Res 67–68:153–161CrossRefGoogle Scholar
  12. Dotzek N (2009) Derivation of physically motivated wind speed scales. Atmos Res 93(1–3):564–574CrossRefGoogle Scholar
  13. Dotzek N, Berz G, Rauch E, Peterson RE (2000) Die Bedeutung von Johannes P. Letzmanns, “Richtlinien zur Erforschung von Tromben, Tornados, Wasserhosen und Kleintromben” für die heutige Tornado-forschung. (The relevance of Johannes P. Letzmann’s “Guidelines for research on tornadoes, waterspouts, and whirlwinds” for contemporary tornado research). Meteorol Z 9:165–174Google Scholar
  14. Dotzek N, Grieser J, Brooks HE (2003) Statistical modeling of tornado intensity distributions. Atmos Res 67–68:163–187CrossRefGoogle Scholar
  15. Dotzek N, Peterson RE, Feuerstein B, Hubrig M (2008a) Comments on “a simple model for simulating tornado damage in forests”. J Appl Meteorol Climatol 47:726–731CrossRefGoogle Scholar
  16. Dotzek N, Groenemeijer P, Feuerstein B (2008b) Overview of ESSL’s severe convective storms research using the European Severe Weather Database ESWD. Atmos Res 93(1–3):275–586Google Scholar
  17. Dotzek N, Groenemeijer P, Feuerstein B, Holzer AM (2009) Overview of ESSL’s severe convective storms research using the European Severe Weather Database ESWD. Atmos Res 93:575–586CrossRefGoogle Scholar
  18. Eurocode 1: Actions on structures—Part 1-1: General actions—densities, self-weight, imposed loads for buildings [Authority: The European Union Per Regulation 305/2011, Directive 98/34/EC, Directive 2004/18/EC]Google Scholar
  19. Faleschini F, Fernandez-Ruiz MA, Zanini MA, Brunelli K, Pellegrino C, Montes E (2015a) High performance concrete with electric arc furnace slag as concrete: mechanical and durability properties. Constr Build Mat 101:113–121CrossRefGoogle Scholar
  20. Faleschini F, Zanini MA, Brunelli K, Pellegrino C (2015b) Valorization of co-combustion fly ash in concrete production. Mater Des 85:687–694Google Scholar
  21. Feuerstein B, Dotzek N, Grieser J (2005) Assessing a tornado climatology from global tornado intensity distributions. J Clim 18:585–596CrossRefGoogle Scholar
  22. Feuerstein B, Groenemeijer P, Dirksen E, Hubrig M, Holzer AM, Dotzek N (2011) Towards an improved wind speed scale and damage description adapted for Central Europe. Atmos Res 100(4):547–564CrossRefGoogle Scholar
  23. Fujita TT (1971) Proposed characterization of tornadoes and hurricanes by area and intensity, SMRP research paper, vol 91, University of Chicago, p 42Google Scholar
  24. Fujita TT (1992) Mystery of severe storms. Chicago University Press, Chicago, p 298Google Scholar
  25. Giaiotti DB, Giovannoni M, Pucillo A, Stel F (2007) The climatology of tornadoes and waterspouts in Italy. Atmos Res 83(2–4):534–541CrossRefGoogle Scholar
  26. Giornale dell’I. R. Istituto Lombardo di Scienze, Lettere ed Arti (1843) Tomo VIII, Milano, p 145Google Scholar
  27. Holzer AM (2001) Tornado climatology of Austria. Atmos Res 56(1–4):203–211CrossRefGoogle Scholar
  28. Huber A, Dragoni M (1992) The historic and artistic heritage facing the earthquake risk: the Italian case. Nat Hazard 5:269–278CrossRefGoogle Scholar
  29. Jordan JW (2007) Tornado damage assessment for structural engineers. Forensic Eng, ASCE, pp 1–17Google Scholar
  30. Karstens CD, Samaras TM, Lee BD, Gallus WA Jr, Finley CA (2010) Near-ground pressure and wind measurements in tornadoes. Mon Weather Rev 138(7):2570–2588CrossRefGoogle Scholar
  31. Machiavelli N (1796) Delle Istorie Fiorentine. Libro sesto, p 229Google Scholar
  32. McCarthy DW, Schaefer JT, Edwards R (2006) What are we doing with (or to) the F-Scale? Preprints 23rd Conference on severe local storms. American Meteorological Society, St. Louis, MOGoogle Scholar
  33. McDonald JR (2002) Development of an enhanced Fujita scale for estimating tornado intensity. Preprints, 21st conference on severe local storms, Austin. American Meteorological Society, Boston, pp 174–177Google Scholar
  34. McDonald JR, Lu D (1995) A methodology for tornado hazard probability assessment. In: Proceedings of the fifth department of energy natural phenomena hazard mitigation conference. Department of Energy, Denver, CO, pp 249–259Google Scholar
  35. McDonald JR, Mehta KC, Mani S (2003) F-scale modification process and proposed revisions. Preprints, 83rd AMS annual meeting: symposium on the F-Scale and severe-weather damage assessment, long beach. American Meteorological Society, Boston, p 5Google Scholar
  36. McDonald JR, Forbes GS, Marshall TP (2004) The enhanced Fujita (EF) scale. Preprints 22nd conference on severe local storms, Hyannis. American Meteorological Society, Boston, p 7Google Scholar
  37. Montanari G (1694) Le Forze d’Eolo. Dialogo fisico—matematico sopra gli effetti del Vortice, ò fia Turbine, detto negli Stati Veneti. La Bisciabuova. Che il giorno 29 Luglio 1686 hà scorso e flagellato molte Ville, e Luoghi de’ Territorj di Mantova, Padova, Verona, &c. Parma: A. PolettiGoogle Scholar
  38. Morbin R, Zanini MA, Pellegrino C, Zhang H, Modena C (2015) A probabilistic strategy for seismic assessment and FRP retrofitting of existing bridges. Bull Earth Eng 13(8):2411–2428CrossRefGoogle Scholar
  39. NOAA—National Oceanic and Atmospheric Administration (2003) A guide to F-scale damage assessment, April 2003Google Scholar
  40. Phan LT, Simiu E (1999) The Fujita scale: a reassessment from a structural engineering perspective. In: Proceedings, U.S./Japan Natural Resources Development Program, Joint meeting 31st Technical Memorandum of PWRI 3653, Tsukuba, pp 469–474Google Scholar
  41. Potter S (2007) Fine-tuning Fujita: after 35 years, a new scale for rating tornadoes takes effect. Weatherwise 60(2):64–71CrossRefGoogle Scholar
  42. Romeo RW (2005) Earthquake hazard in Italy, 2001–2030. Nat Hazards 36:383–405CrossRefGoogle Scholar
  43. Rota M, Penna A, Strobbia CL (2008) Processing Italian damage data to derive typological fragility curves. Soil Dyn Earth Eng 28:933–947CrossRefGoogle Scholar
  44. Tominaga Y, Akabayashi SI, Kitahara T, Arinami Y (2015) Air flow around isolated gable-roof buildings with different roof pitches: wind tunnel experiments and CFD simulations. Build Environ 84(February):204–213CrossRefGoogle Scholar
  45. Twisdale LA, Dunn WL, Chu J (1978) Tornado missile risk analysis, EPRI reports NP-768 and NP-769. Electric Power Research Institute, Palo AltoGoogle Scholar
  46. Wegener A (1917) Wind - und Wasserhosen in Europa (Tornadoes and Waterspouts in Europe). Verlag Friedrich Vieweg und Sohn, Braunsch- weig, p 301Google Scholar
  47. WSEC (2004) A recommendation for an enhanced Fujita scale (EF-scale). Wind Science and Engineering Center, Texas Tech University, Lubbock, Texas, p 95Google Scholar
  48. Zanini MA, Faleschini F, Pellegrino C (2016) Cost analysis for maintenance and seismic retrofit of existing bridges. Struct Infrastruct Eng 12(11):1411–1427Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Mariano Angelo Zanini
    • 1
  • Lorenzo Hofer
    • 1
  • Flora Faleschini
    • 1
  • Carlo Pellegrino
    • 1
  1. 1.Department of Civil, Environmental and Architectural EngineeringUniversity of PadovaPaduaItaly

Personalised recommendations