Skip to main content

Advertisement

Log in

Seismic vulnerability assessment using association rule learning: application to the city of Constantine, Algeria

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

We performed a seismic vulnerability assessment of the city of Constantine (Algeria) using the Risk-UE and datamining-based methods [association rule learning (ARL)]. The ARL method consists in establishing relationships between building attributes (number of stories or building age) and the vulnerability classes of the European Macro-seismic Scale, EMS98. This approach avoids the costly process of drawing up an inventory of building characteristics in the field, which often discourages the assessment of seismic risk initiatives in weak to moderate seismic-prone regions. We showed that the accuracy of the assessment is independent of the subset used for the learning phase leading to development of the Constantine vulnerability proxy. Considering only two attributes, the vulnerability assignment is equal to about 75%, reaching 99% if material is added to the attributes considered. Comparison of Risk-UE and ARL results revealed a reliable assessment of vulnerability, the differences having only a slight impact on the probability of exceeding the damage level computed by EMS98 or Risk-UE in Constantine. The results of this study suggest that the ARL-based vulnerability proxy is efficient and could be applied to the rest of Algeria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Agrawal R, Imielinski T, Swami A (1993) Mining association rules between sets of items in large databases. In: Proceedings of the 1993 ACM SIGMOD international conference on Management of data, SIGMOD ’93. doi:10.1145/170035.17007

  • Aoudia A, Meghraoui M (1995) Seismotectonics in the Tell Atlas of Algeria: the Cavaignac (Abou El Hassan) earthquake of 25.08. 1922 (Ms = 5.9). Tectonophysics 248(3):263–276

    Article  Google Scholar 

  • Baba Hamed FZ, Rahal DD, Rahal F (2013) Seismic risk assessment of Algerian buildings in urban area. J Civ Eng Manag 19(3):348–363

    Article  Google Scholar 

  • Barbat AH, Carreño ML, Pujades LG, Lantada N, Cardona OD, Marulanda MC (2010) Seismic vulnerability and risk evaluation methods for urban areas. A review with application to a pilot area. Struct Infrastruct Eng 6:17–38. doi:10.1080/15732470802663763

    Article  Google Scholar 

  • Bard P-Y, Duval A-M, Bertrand E, Vassiliadès J-F, Vidal S, Thibault C, Guyet B, Mèneroud J-P, Guéguen P, Foin P, Dunand F, Bonnefoy-Claudet S, Vettor G (2005) Le risque Sismique à Nice: apport méthodologique, résultats et perspectives opérationnelles. Rapport final GEMGEP

  • Benedetti D, Petrini V (1984) Sulla vulnerabilita di edifici in muratura: proposta di un metodo di valutazione. L’industria delle Costruzioni 149:66–74 (in Italian)

    Google Scholar 

  • Benson C, Twigg J (2004) Measuring mitigation: methodologies for assessing natural hazard risks and the net benefits of mitigation—a scoping study. In: International Federation of Red Cross and Red Crescent Societies/the ProVention Consortium

  • Bernardini A, Lagomarsino S, Mannella A, Martinelli A, Milano L, Parodi S (2010) Forecasting seismic damage scenarios of residential buildings from rough inventories: a case-study in the Abruzzo Region (Italy). Proc Inst Mech Eng Part O J Risk and Reliab 224(4):279–296

    Google Scholar 

  • Boukri M, Farsi MN, Mebarki A, Belazougui M, Amellal O, Mezagzigh B, Guessoum N, Bourenane H, Benhamiuche A (2014) Seismic risk and damage prediction: case of the buildings in Constantine city (Algeria). Bull Earthq Eng 12:2683–2704. doi:10.1007/s10518-014-9594-0

    Article  Google Scholar 

  • Bounif A, Haessler H, Meghraoui M (1987) The Constantine (northeast Algeria) earthquake of October 27, 1985: surface ruptures and aftershock study. Earth Planet Sci Lett 85(4):451–460

    Article  Google Scholar 

  • Buforn E, De Galdeano CS, Udías A (1995) Seismotectonics of the Ibero-Maghrebian region. Tectonophysics 248(3):247–261

    Article  Google Scholar 

  • Chatelain JL, Tucker B, Guillier B, Kaneko F, Yepes H, Fernandez J, Yamada T (1999) Earthquake risk management pilot project in Quito, Ecuador. GeoJournal 49(2):185–196

    Article  Google Scholar 

  • Erdik M, Aydinoglu N, Fahjan Y, Sesetyan K, Demircioglu M, Siyahi B, Yuzugullu O (2003) Earthquake risk assessment for Istanbul metropolitan area. Earthq Eng Eng Vib 2(1):1–23

    Article  Google Scholar 

  • Faccioli E, Pessina V, Calvi GM, Borzi B (1999) A study on damage scenarios for residential buildings in Catania city. J Seismol 3(3):327–343

    Article  Google Scholar 

  • Geiß C, Taubenböck H, Tyagunov S, Tisch A, Post J, Lakes T (2014) Assessment of seismic building vulnerability from space. Earthq Spectra 30(4):1553–1583

    Article  Google Scholar 

  • GNDT (1993) Rischio Sismico di edifici Pubblici-Parte I Aspetti Metodologici. CNR – Gruppo Nazionale per la Difesa dai Terremoti, Roma, Italy (in Italian)

  • Grünthal G, Levret A (2001) L’échelle macrosismique européenne, European macroseismic scale 1998(EMS-98), Conseil de l’Europe, Cahiers du Centre Européen de Géodynamique et de Séismologie, vol 19

  • Guéguen P (ed) (2013) Seismic vulnerability of structures Civil Engineering and geomechanics series. John wiley and son, Hoboken, 368 pp

  • Guéguen P, Michel C, LeCorre L (2007) A simplified approach for vulnerability assessment in moderate-to-low seismic hazard regions: application to Grenoble (France). Bull Earthq Eng 4(3):467–490

    Article  Google Scholar 

  • Hamdache M, Peláez JA, Talbi A, Mobarki M, Casado CL (2012) Ground-motion hazard values for Northern Algeria. Pure Appl Geophys 169(4):711–723

    Article  Google Scholar 

  • HAZUS (1997) Earthquake loss estimation methodology, Hazus technical manuals. National Institute of Building Science, Federal Emergency Management Agency (FEMA), Washington

  • Kherroubi A, Déverchère J, Yelles A, De Lépinay BM, Domzig A, Cattaneo A, Graindorge D (2009) Recent and active deformation pattern off the easternmost Algerian margin, Western Mediterranean Sea: new evidence for contractional tectonic reactivation. Mar Geol 261(1):17–32

    Article  Google Scholar 

  • KVERMP (1998) The Kathmandu Valley earthquake management action plan. http://geohaz.org/downloads/publications/KathmanduValleyEQRiskMgtActionPlan.pdf

  • Lagomarsino S, Giovinazzi S (2006) Macroseismic and mechanical models for the vulnerability and damage assessment of current buildings. Bull Earthq Eng 4(4):415–443

    Article  Google Scholar 

  • Lestuzzi P, Podestà S, Luchini C, Garofano A, Katzantzidou-Firtinidou D, Bozzano C, Bischof P, Haffter A, Rouiller J-D (2016) Seismic vulnerability assessment at urban scale for two typical Swiss cities using Risk-UE methodology. Nat Hazards. doi:10.1007/s11069-016-2420-z

    Google Scholar 

  • McKenzie D (1972) Active tectonics of the Mediterranean region. Geophys J Int 30(2):109–185

    Article  Google Scholar 

  • Meslem A, Yamazaki F, Maruyama Y, Benouar D, Kibboua A, Mehani Y (2012) The effects of building characteristics and site conditions on the damage distribution in Boumerdès after the 2003 Algeria earthquake. Earthq Spectra 28(1):185–216

    Article  Google Scholar 

  • Mickus K, Jallouli C (1999) Crustal structure beneath the Tell and Atlas Mountains (Algeria and Tunisia) through the analysis of gravity data. Tectonophysics 314(4):373–385

    Article  Google Scholar 

  • Milutinovic ZV, Trendafiloski GS (2003) Risk-UE an advanced approach to earthquake risk scenarios with applications to different European towns, Contract: EVK4-CT-2000-00014, WP4: Vulnerability of Current Buildings

  • Mueller M, Segl K, Heiden U, Kaufmann H (2006) Potential of high-resolution satellite data in the context of vulnerability of buildings. Nat Hazards 38(1–2):247–258

    Article  Google Scholar 

  • ONS (2008) General census of housing and population, National Statistics Office, Algiers

  • Ousadou F, Dorbath L, Dorbath C, Bounif MA, Benhallou H (2013) The Constantine (Algeria) seismic sequence of 27 October 1985: a new rupture model from aftershock relocation, focal mechanisms, and stress tensors. J Seismol 17(2):207–222

    Article  Google Scholar 

  • Peláez JA, Hamdache M, Casado CL (2006) Seismic hazard in terms of spectral accelerations and uniform hazard spectra in northern Algeria. Pure Appl Geophys 163(1):119–135

    Article  Google Scholar 

  • Riedel I, Gueguen P, Dunand F, Cottaz S (2014) Macroscale vulnerability assessment of cities using association rule learning. Seismol Res Lett 85(2):295–305

    Article  Google Scholar 

  • Riedel I, Guéguen P, Dalla Mura M, Pathier E, Leduc T, Chanussot J (2015) Seismic vulnerability assessment of urban environments in moderate-to-low seismic hazard regions using association rule learning and support vector machine methods. Nat Hazards 76(2):1111–1141. doi:10.1007/s11069-014-1538-0

    Article  Google Scholar 

  • RPA03 (2003) Règles Parasismiques Algériennes/Algerian Earthquake Resistant Regulations RPA99/Version 2003, application since 2004, Ministère de l’Habitat et de l’Urbanisme

  • RPA81 (1981) Règles Parasismiques Algériennes/Algerian Earthquake Resistant Regulations, Ministère de l’Habitat et de l’Urbanisme

  • Smyth AW, Altay G, Deodatis G, Erdik M, Franco G, Gulkan P, Yuzugullu O (2004) Probabilistic benefit-cost analysis for earthquake damage mitigation: evaluating measures for apartment houses in Turkey. Earthq Spectra 20(1):171–203

    Article  Google Scholar 

  • Spence R, Brun BL (2006) Preface. Bull Earthq Eng 4(4):319–321

    Article  Google Scholar 

  • Tucker BE, Erdik MÖ, Hwang CN (eds) (2013) Issues in urban earthquake risk, vol 271. Springer Science & Business Media, Berlin

    Google Scholar 

  • Yelles-Chaouche A, Boudiaf A, Djellit H, Bracene R (2006) La tectonique active de la région nord-algérienne. Comptes Rendus Géosci 338(1):126–139

    Article  Google Scholar 

Download references

Acknowledgements

The MAIF Foundation supported this work. Philippe Guéguen has been supported by a grant from Labex OSUG@2020 (Investissements d’avenir—ANR10 LABX56).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Guéguen.

Appendices

Appendix 1: Building inventory form used in Constantine and screenshot (in French) of the automatic datasheet used to compute vulnerability index and mean damage using Risk-UE method

Appendix 2: On site pictures of inspected buildings in Constantine

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guettiche, A., Guéguen, P. & Mimoune, M. Seismic vulnerability assessment using association rule learning: application to the city of Constantine, Algeria. Nat Hazards 86, 1223–1245 (2017). https://doi.org/10.1007/s11069-016-2739-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-016-2739-5

Keywords

Navigation