Advertisement

Natural Hazards

, Volume 86, Issue 3, pp 1223–1245 | Cite as

Seismic vulnerability assessment using association rule learning: application to the city of Constantine, Algeria

  • Abdelheq Guettiche
  • Philippe Guéguen
  • Mostefa Mimoune
Original Paper

Abstract

We performed a seismic vulnerability assessment of the city of Constantine (Algeria) using the Risk-UE and datamining-based methods [association rule learning (ARL)]. The ARL method consists in establishing relationships between building attributes (number of stories or building age) and the vulnerability classes of the European Macro-seismic Scale, EMS98. This approach avoids the costly process of drawing up an inventory of building characteristics in the field, which often discourages the assessment of seismic risk initiatives in weak to moderate seismic-prone regions. We showed that the accuracy of the assessment is independent of the subset used for the learning phase leading to development of the Constantine vulnerability proxy. Considering only two attributes, the vulnerability assignment is equal to about 75%, reaching 99% if material is added to the attributes considered. Comparison of Risk-UE and ARL results revealed a reliable assessment of vulnerability, the differences having only a slight impact on the probability of exceeding the damage level computed by EMS98 or Risk-UE in Constantine. The results of this study suggest that the ARL-based vulnerability proxy is efficient and could be applied to the rest of Algeria.

Keywords

Vulnerability Scenario Earthquake Association rule learning Risk-UE Damage grade EMS98 Constantine 

Notes

Acknowledgements

The MAIF Foundation supported this work. Philippe Guéguen has been supported by a grant from Labex OSUG@2020 (Investissements d’avenir—ANR10 LABX56).

References

  1. Agrawal R, Imielinski T, Swami A (1993) Mining association rules between sets of items in large databases. In: Proceedings of the 1993 ACM SIGMOD international conference on Management of data, SIGMOD ’93. doi: 10.1145/170035.17007
  2. Aoudia A, Meghraoui M (1995) Seismotectonics in the Tell Atlas of Algeria: the Cavaignac (Abou El Hassan) earthquake of 25.08. 1922 (Ms = 5.9). Tectonophysics 248(3):263–276CrossRefGoogle Scholar
  3. Baba Hamed FZ, Rahal DD, Rahal F (2013) Seismic risk assessment of Algerian buildings in urban area. J Civ Eng Manag 19(3):348–363CrossRefGoogle Scholar
  4. Barbat AH, Carreño ML, Pujades LG, Lantada N, Cardona OD, Marulanda MC (2010) Seismic vulnerability and risk evaluation methods for urban areas. A review with application to a pilot area. Struct Infrastruct Eng 6:17–38. doi: 10.1080/15732470802663763 CrossRefGoogle Scholar
  5. Bard P-Y, Duval A-M, Bertrand E, Vassiliadès J-F, Vidal S, Thibault C, Guyet B, Mèneroud J-P, Guéguen P, Foin P, Dunand F, Bonnefoy-Claudet S, Vettor G (2005) Le risque Sismique à Nice: apport méthodologique, résultats et perspectives opérationnelles. Rapport final GEMGEPGoogle Scholar
  6. Benedetti D, Petrini V (1984) Sulla vulnerabilita di edifici in muratura: proposta di un metodo di valutazione. L’industria delle Costruzioni 149:66–74 (in Italian) Google Scholar
  7. Benson C, Twigg J (2004) Measuring mitigation: methodologies for assessing natural hazard risks and the net benefits of mitigation—a scoping study. In: International Federation of Red Cross and Red Crescent Societies/the ProVention ConsortiumGoogle Scholar
  8. Bernardini A, Lagomarsino S, Mannella A, Martinelli A, Milano L, Parodi S (2010) Forecasting seismic damage scenarios of residential buildings from rough inventories: a case-study in the Abruzzo Region (Italy). Proc Inst Mech Eng Part O J Risk and Reliab 224(4):279–296Google Scholar
  9. Boukri M, Farsi MN, Mebarki A, Belazougui M, Amellal O, Mezagzigh B, Guessoum N, Bourenane H, Benhamiuche A (2014) Seismic risk and damage prediction: case of the buildings in Constantine city (Algeria). Bull Earthq Eng 12:2683–2704. doi: 10.1007/s10518-014-9594-0 CrossRefGoogle Scholar
  10. Bounif A, Haessler H, Meghraoui M (1987) The Constantine (northeast Algeria) earthquake of October 27, 1985: surface ruptures and aftershock study. Earth Planet Sci Lett 85(4):451–460CrossRefGoogle Scholar
  11. Buforn E, De Galdeano CS, Udías A (1995) Seismotectonics of the Ibero-Maghrebian region. Tectonophysics 248(3):247–261CrossRefGoogle Scholar
  12. Chatelain JL, Tucker B, Guillier B, Kaneko F, Yepes H, Fernandez J, Yamada T (1999) Earthquake risk management pilot project in Quito, Ecuador. GeoJournal 49(2):185–196CrossRefGoogle Scholar
  13. Erdik M, Aydinoglu N, Fahjan Y, Sesetyan K, Demircioglu M, Siyahi B, Yuzugullu O (2003) Earthquake risk assessment for Istanbul metropolitan area. Earthq Eng Eng Vib 2(1):1–23CrossRefGoogle Scholar
  14. Faccioli E, Pessina V, Calvi GM, Borzi B (1999) A study on damage scenarios for residential buildings in Catania city. J Seismol 3(3):327–343CrossRefGoogle Scholar
  15. Geiß C, Taubenböck H, Tyagunov S, Tisch A, Post J, Lakes T (2014) Assessment of seismic building vulnerability from space. Earthq Spectra 30(4):1553–1583CrossRefGoogle Scholar
  16. GNDT (1993) Rischio Sismico di edifici Pubblici-Parte I Aspetti Metodologici. CNR – Gruppo Nazionale per la Difesa dai Terremoti, Roma, Italy (in Italian) Google Scholar
  17. Grünthal G, Levret A (2001) L’échelle macrosismique européenne, European macroseismic scale 1998(EMS-98), Conseil de l’Europe, Cahiers du Centre Européen de Géodynamique et de Séismologie, vol 19Google Scholar
  18. Guéguen P (ed) (2013) Seismic vulnerability of structures Civil Engineering and geomechanics series. John wiley and son, Hoboken, 368 ppGoogle Scholar
  19. Guéguen P, Michel C, LeCorre L (2007) A simplified approach for vulnerability assessment in moderate-to-low seismic hazard regions: application to Grenoble (France). Bull Earthq Eng 4(3):467–490CrossRefGoogle Scholar
  20. Hamdache M, Peláez JA, Talbi A, Mobarki M, Casado CL (2012) Ground-motion hazard values for Northern Algeria. Pure Appl Geophys 169(4):711–723CrossRefGoogle Scholar
  21. HAZUS (1997) Earthquake loss estimation methodology, Hazus technical manuals. National Institute of Building Science, Federal Emergency Management Agency (FEMA), WashingtonGoogle Scholar
  22. Kherroubi A, Déverchère J, Yelles A, De Lépinay BM, Domzig A, Cattaneo A, Graindorge D (2009) Recent and active deformation pattern off the easternmost Algerian margin, Western Mediterranean Sea: new evidence for contractional tectonic reactivation. Mar Geol 261(1):17–32CrossRefGoogle Scholar
  23. KVERMP (1998) The Kathmandu Valley earthquake management action plan. http://geohaz.org/downloads/publications/KathmanduValleyEQRiskMgtActionPlan.pdf
  24. Lagomarsino S, Giovinazzi S (2006) Macroseismic and mechanical models for the vulnerability and damage assessment of current buildings. Bull Earthq Eng 4(4):415–443CrossRefGoogle Scholar
  25. Lestuzzi P, Podestà S, Luchini C, Garofano A, Katzantzidou-Firtinidou D, Bozzano C, Bischof P, Haffter A, Rouiller J-D (2016) Seismic vulnerability assessment at urban scale for two typical Swiss cities using Risk-UE methodology. Nat Hazards. doi: 10.1007/s11069-016-2420-z Google Scholar
  26. McKenzie D (1972) Active tectonics of the Mediterranean region. Geophys J Int 30(2):109–185CrossRefGoogle Scholar
  27. Meslem A, Yamazaki F, Maruyama Y, Benouar D, Kibboua A, Mehani Y (2012) The effects of building characteristics and site conditions on the damage distribution in Boumerdès after the 2003 Algeria earthquake. Earthq Spectra 28(1):185–216CrossRefGoogle Scholar
  28. Mickus K, Jallouli C (1999) Crustal structure beneath the Tell and Atlas Mountains (Algeria and Tunisia) through the analysis of gravity data. Tectonophysics 314(4):373–385CrossRefGoogle Scholar
  29. Milutinovic ZV, Trendafiloski GS (2003) Risk-UE an advanced approach to earthquake risk scenarios with applications to different European towns, Contract: EVK4-CT-2000-00014, WP4: Vulnerability of Current BuildingsGoogle Scholar
  30. Mueller M, Segl K, Heiden U, Kaufmann H (2006) Potential of high-resolution satellite data in the context of vulnerability of buildings. Nat Hazards 38(1–2):247–258CrossRefGoogle Scholar
  31. ONS (2008) General census of housing and population, National Statistics Office, AlgiersGoogle Scholar
  32. Ousadou F, Dorbath L, Dorbath C, Bounif MA, Benhallou H (2013) The Constantine (Algeria) seismic sequence of 27 October 1985: a new rupture model from aftershock relocation, focal mechanisms, and stress tensors. J Seismol 17(2):207–222CrossRefGoogle Scholar
  33. Peláez JA, Hamdache M, Casado CL (2006) Seismic hazard in terms of spectral accelerations and uniform hazard spectra in northern Algeria. Pure Appl Geophys 163(1):119–135CrossRefGoogle Scholar
  34. Riedel I, Gueguen P, Dunand F, Cottaz S (2014) Macroscale vulnerability assessment of cities using association rule learning. Seismol Res Lett 85(2):295–305CrossRefGoogle Scholar
  35. Riedel I, Guéguen P, Dalla Mura M, Pathier E, Leduc T, Chanussot J (2015) Seismic vulnerability assessment of urban environments in moderate-to-low seismic hazard regions using association rule learning and support vector machine methods. Nat Hazards 76(2):1111–1141. doi: 10.1007/s11069-014-1538-0 CrossRefGoogle Scholar
  36. RPA03 (2003) Règles Parasismiques Algériennes/Algerian Earthquake Resistant Regulations RPA99/Version 2003, application since 2004, Ministère de l’Habitat et de l’UrbanismeGoogle Scholar
  37. RPA81 (1981) Règles Parasismiques Algériennes/Algerian Earthquake Resistant Regulations, Ministère de l’Habitat et de l’UrbanismeGoogle Scholar
  38. Smyth AW, Altay G, Deodatis G, Erdik M, Franco G, Gulkan P, Yuzugullu O (2004) Probabilistic benefit-cost analysis for earthquake damage mitigation: evaluating measures for apartment houses in Turkey. Earthq Spectra 20(1):171–203CrossRefGoogle Scholar
  39. Spence R, Brun BL (2006) Preface. Bull Earthq Eng 4(4):319–321CrossRefGoogle Scholar
  40. Tucker BE, Erdik MÖ, Hwang CN (eds) (2013) Issues in urban earthquake risk, vol 271. Springer Science & Business Media, BerlinGoogle Scholar
  41. Yelles-Chaouche A, Boudiaf A, Djellit H, Bracene R (2006) La tectonique active de la région nord-algérienne. Comptes Rendus Géosci 338(1):126–139CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Centre Universitaire Abdelhafid BoussoufMilaAlgeria
  2. 2.Civil Engineering DepartmentUniversité des Frères MentouriConstantineAlgeria
  3. 3.Institut des Sciences de la Terre – ISTerreUniversité de Grenoble Alpes/CNRS/IFSTTARGrenobleFrance

Personalised recommendations