Skip to main content

Advertisement

Log in

Analysis of recent spatial–temporal evolution of human driving factors of wildfires in Spain

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Fire regimes are strongly dependent on human activities. Understanding the relative influence of human factors on wildfire is an important ongoing task especially in human-dominated landscapes such as the Mediterranean, where anthropogenic ignitions greatly surpass natural ignitions and human activities are modifying historical fire regimes. Most human drivers of wildfires have a temporal dimension, far beyond the appearance of change, and it is for this reason that we require an historical/temporal analytical perspective coupled to the spatial dimension. In this paper, we investigate and analyze spatial–temporal changes in the contribution of major human factors influencing forest fire occurrence, using Spanish historical statistical fire data from 1988 to 2012. We hypothesize that the influence of socioeconomic drivers on wildfires has changed over this period. Our method is based on fitting yearly explanatory regression models—testing several scenarios of wildfire data aggregation—using logit and Poisson generalized linear models to determine the significance thresholds of the covariates. We then conduct a trend analysis using the Mann–Kendall test to calculate and analyze possible trends in the explanatory power of human driving factors of wildfires. Finally, Geographically Weighted Regression Models are explored to examine potential spatial–temporal patterns. Our results suggest that some of the explanatory factors of logistic models do vary over time and that new explanatory factors might be considered (such as arson-related variables or climate factors), since some of the traditional ones seem to be losing significance in the presence–absence models, opposite to fire frequency models. In particular, the wildland–agricultural interface and wildland–urban interface appear to be losing explanatory power regarding ignition probability, and protected areas are becoming less significant in fire frequency models. GWR models revealed that this temporal behavior is not stationary neither over space nor time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Archibald S, Lehmann CER, Gómez-Dans JL, Bradstock RA (2013) Defining pyromes and global syndromes of fire regimes. Proc Natl Acad Sci 110:6442–6447. doi:10.1073/pnas.1211466110

    Article  Google Scholar 

  • Bal M-C, Pelachs A, Perez-Obiol R et al (2011) Fire history and human activities during the last 3300 cal yr BP in Spain’s Central Pyrenees: the case of the Estany de Burg. Palaeogeogr Palaeoclimatol Palaeoecol 300:179–190. doi:10.1016/j.palaeo.2010.12.023

    Article  Google Scholar 

  • Calvo JL, Pueyo A (2008) Atlas Nacional de España: Demografía. Centro Nacional de Información Geográfica, Madrid

    Google Scholar 

  • Carmona A, González ME, Nahuelhual L, Silva J (2012) Spatio-temporal effects of human drivers on fire danger in Mediterranean Chile. Bosque 33:321–328

    Article  Google Scholar 

  • CEE (1986) Reglamento (CEE) no 3529/1986 del Consejo, de 17 de noviembre de 1986, relativo a la protección de los bosques en la Comunidad contra los incendios. EU

  • CEE (1992) Reglamento (CEE) no 2158/92 del Consejo, de 23 de julio de 1992, relativo a la protección de los bosques comunitarios contra los incendios. DO L 217 de 31.07.1992, EU

  • Chelli S, Maponi P, Campetella G et al (2014) Adaptation of the Canadian fire weather index to Mediterranean forests. Nat Hazards 75:1795–1810. doi:10.1007/s11069-014-1397-8

    Article  Google Scholar 

  • Chuvieco E, Aguado I, Yebra M et al (2010) Development of a framework for fire risk assessment using remote sensing and geographic information system technologies. Ecol Model 221:46–58. doi:10.1016/j.ecolmodel.2008.11.017

    Article  Google Scholar 

  • Chuvieco E, Aguado I, Jurdao S et al (2012) Integrating geospatial information into fire risk assessment. Int J Wildland Fire. doi:10.1071/WF12052

    Google Scholar 

  • Darques R (2015) Mediterranean cities under fire. A critical approach to the wildland–urban interface. Appl Geogr 59:10–21. doi:10.1016/j.apgeog.2015.02.008

    Article  Google Scholar 

  • Drapela K, Drapelova I (2011) Application of Mann-Kendall test and the Sen’sslope estimates for trend detection in deposition data from Bílý Kříž (Beskydy Mts., the Czech Republic) 1997–2010. Beskdy Mendel University in Brno

  • Fotheringham AS, Brunsdon C, Charlton ME (2002) Geographically weighted regression: the analysis of spatially varying relationships. Wiley, Chichester

    Google Scholar 

  • Galiana-Martin L, Herrero G, Solana J (2011) A wildland–urban interface typology for forest fire risk management in Mediterranean areas. Landsc Res 36:151–171. doi:10.1080/01426397.2010.549218

    Article  Google Scholar 

  • Ganteaume A, Camia A, Jappiot M et al (2013) a review of the main driving factors of forest fire ignition over Europe. Environ Manag 51:651–662. doi:10.1007/s00267-012-9961-z

    Article  Google Scholar 

  • Hanley JA, McNeil BJ (1982) The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143:29–36

    Article  Google Scholar 

  • Harris S, Nicholls N, Tapper N (2014) Forecasting fire activity in Victoria, Australia, using antecedent climate variables and ENSO indices. Int J Wildland Fire 23:173–184

    Article  Google Scholar 

  • Henry BM (1945) Nonparametric tests against trend. Econometrica 13:245–259

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, et al (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. doi:10.1002/joc.1276

    Article  Google Scholar 

  • Hisdal H, Stahl K, Tallaksen LM, Demuth S (2001) Have streamflow droughts in Europe become more severe or frequent? Int J Climatol 21:317–333. doi:10.1002/joc.619

    Article  Google Scholar 

  • Kendall MG (1975) Rank correlation methods, 4th edn. Charles Griffin, London

    Google Scholar 

  • Koutsias N, Martínez-Fernández J, Allgöwer B (2010) Do factors causing wildfires vary in space? Evidence from geographically weighted regression. GIScience Remote Sens 47:221–240. doi:10.2747/1548-1603.47.2.221

    Article  Google Scholar 

  • Koutsias N, Xanthopoulos G, Founda D et al (2013) On the relationships between forest fires and weather conditions in Greece from long-term national observations (1894–2010). Int J Wildland Fire 22:493–507

    Article  Google Scholar 

  • Koutsias N, Allgöwer B, Kalabokidis K et al (2016) Fire occurrence zoning from local to global scale in the European Mediterranean basin: implications for multi-scale fire management and policy. iForest-Biogeosci For 9:195–204

    Article  Google Scholar 

  • Leone V, Koutsias N, Martínez J et al (2003) The human factor in fire danger assessment. In: Chuvieco E (ed) Wildland fire danger estimation and mapping. The Role of remote sensing data. World Scientific Publishing, Singapore

    Google Scholar 

  • Leone V, Lovreglio R, Martín MP et al (2009) Human factors of fire occurrence in the Mediterranean. In: Chuvieco E (ed) Earth observation of wildland fires in Mediterranean ecosystems. Springer, Berlin Heidelberg, pp 149–170

    Chapter  Google Scholar 

  • Lynch AH, Beringer J, Kershaw P et al (2007) Using the paleorecord to evaluate climate and fire interactions in Australia. Annu Rev Earth Planet Sci 35:215–239. doi:10.1146/annurev.earth.35.092006.145055

    Article  Google Scholar 

  • MAGRAMA (2012) Los Incendios Forestales en España. Decenio 2001–2010. Ministerio de Agricultura, Alimentación y Medio Ambiente. Madrid. NIPO: 280-12-210-8 (en línea). 138 pp

  • Mann ML, Batllori E, Moritz MA et al (2016) Incorporating anthropogenic influences into fire probability models: effects of human activity and climate change on fire activity in California. PLoS ONE 11:1–21. doi:10.1371/journal.pone.0153589

    Article  Google Scholar 

  • MAPA (1988a) ORDEN de 21 de marzo de 1988 por la que se establece un Plan de Acciones Prioritarias contra los Incendios Forestales. BOE 72, 24 de marzo de 1988, Spain

  • MAPA (1988b) Real Decreto 875/1988, de 29 de julio, por el que se regula la compensación de gastos derivados de la extinción de incendios forestales. BOE 186, 4 de agosto de 1988, Spain

  • Martínez J, Chuvieco E, Martín MP (2004a) Estimating human risk factors in wildland fires in Spain using logistic regression. In: II international symposium on fire economics, planning and policy: a global vision, Cordoba

  • Martínez J, Martínez-Vega J, Martín P (2004b) El factor humano en los incendios forestales: análisis de los factores socio-económicos relacionados con la incidencia de incendios forestales en España. In: Chuevico E, Martín P (eds) Nuevas tecnologías para la estimación del riesgo de incendios forestales. Consejo Superior de Investigaciones Científicas, Instituto de Economía y Geografía, Madrid, pp 101–142

  • Martínez J, Vega-Garcia C, Chuvieco E (2009) Human-caused wildfire risk rating for prevention planning in Spain. J Environ Manag 90:1241–1252. doi:10.1016/j.jenvman.2008.07.005

    Article  Google Scholar 

  • Martínez J, Chuvieco E, Koutsias N (2013) Modelling long-term fire occurrence factors in Spain by accounting for local variations with geographically weighted regression. Nat Hazards Earth Syst 13:311–327

    Article  Google Scholar 

  • Massada AB, Syphard AD, Stewart SI, Radeloff VC (2012) Wildfire ignition-distribution modelling: a comparative study in the Huron–Manistee National Forest, Michigan, USA. Int J Wildland Fire. doi:10.1071/WF11178

    Google Scholar 

  • Minnich RA (1983) Fire mosaics in southern California and northern Baja California. Science 219:1287–1294. doi:10.1126/science.219.4590.1287

    Article  Google Scholar 

  • Moreno MV, Malamud BD, Chuvieco EA (2011) Wildfire frequency-area statistics in Spain. Procedia Environ Sci 7:182–187. doi:10.1016/j.proenv.2011.07.032

    Article  Google Scholar 

  • Moreno MV, Conedera M, Chuvieco E, Pezzatti GB (2014) Fire regime changes and major driving forces in Spain from 1968 to 2010. Environ Sci Policy 37:11–22. doi:10.1016/j.envsci.2013.08.005

    Article  Google Scholar 

  • Nakaya T, Fotheringham S, Charlton M, Brunsdon C (2009) Semiparametric geographically weighted generalised linear modelling in GWR4.0. In: Proceedings of Geocomputation 2009, pp 1–5

  • Ortega M, Saura S, González-Avila S et al (2012) Landscape vulnerability to wildfires at the forest-agriculture interface: half-century patterns in Spain assessed through the SISPARES monitoring framework. Agrofor Syst 85:331–349. doi:10.1007/s10457-011-9423-2

    Article  Google Scholar 

  • Pausas J, Fernández-Muñoz S (2012) Fire regime changes in the Western Mediterranean Basin: from fuel-limited to drought-driven fire regime. Clim Chang 110:215–226. doi:10.1007/s10584-011-0060-6

    Article  Google Scholar 

  • Pausas JG, Keeley JE (2009) A burning story: the role of fire in the history of life. Bioscience 59:593–601

    Article  Google Scholar 

  • Pezzatti GB, Zumbrunnen T, Bürgi M et al (2013) Fire regime shifts as a consequence of fire policy and socio-economic development: an analysis based on the change point approach. For Policy Econ 29:7–18. doi:10.1016/j.forpol.2011.07.002

    Article  Google Scholar 

  • R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  • Randall DA, Wood RA, Bony S, et al (2007) Climate models and their evaluation. In: Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the IPCC (FAR). Cambridge University Press, pp 589–662

  • Rodrigues M, de la Riva J (2014) An insight into machine-learning algorithms to model human-caused wildfire occurrence. Environ Model Softw 57:192–201. doi:10.1016/j.envsoft.2014.03.003

    Article  Google Scholar 

  • Rodrigues M, San Miguel J, Oliveira S et al (2013) An insight into spatial-temporal trends of fire ignitions and burned área in the European Mediterranean countries. J Earth Sci Eng 3:497–505

    Google Scholar 

  • Rodrigues M, de la Riva J, Fotheringham S (2014) Modeling the spatial variation of the explanatory factors of human-caused wildfires in Spain using geographically weighted logistic regression. Appl Geogr 48:52–63. doi:10.1016/j.apgeog.2014.01.011

    Article  Google Scholar 

  • Romero-Calcerrada R, Barrio-Parra F, Millington JDA, Novillo CJ (2010) Spatial modelling of socioeconomic data to understand patterns of human-caused wildfire ignition risk in the SW of Madrid (central Spain). Ecol Model 221:34–45. doi:10.1016/j.ecolmodel.2009.08.008

    Article  Google Scholar 

  • Salis M, Ager AA, Finney MA et al (2013) Analyzing spatiotemporal changes in wildfire regime and exposure across a Mediterranean fire-prone area. Nat Hazards 71:1389–1418. doi:10.1007/s11069-013-0951-0

    Article  Google Scholar 

  • San-Miguel-Ayanz J, Rodrigues M, Oliveira S et al (2012) Land cover change and fire regime in the European Mediterranean Region. In: Moreira F, Arianoutsou M, Corona P, De las Heras J (eds) Post-Fire management and restoration of southern European forests. Springer, Netherlands, pp 21–43

    Chapter  Google Scholar 

  • Sen PK (1968) Estimates of the regression coefficient based on Kendall’s Tau. J Am Stat As 63:1379–1389. doi:10.1080/01621459.1968.10480934

    Article  Google Scholar 

  • Syphard A, Clarke K, Franklin J (2007) Simulating fire frequency and urban growth in southern California coastal shrublands, USA. Landsc Ecol 22:431–445. doi:10.1007/s10980-006-9025-y

    Article  Google Scholar 

  • Syphard AD, Radeloff VC, Keuler NS et al (2008) Predicting spatial patterns of fire on a southern California landscape. Int J Wildland Fire 17:602–613

    Article  Google Scholar 

  • Turco M, Bedia J, Di Liberto F et al (2016) Decreasing fires in Mediterranean Europe. PLoS ONE 11:1–19. doi:10.1371/journal.pone.0150663

    Article  Google Scholar 

  • Vasconcelos MJP, Silva S, Tomé M et al (2001) Spatial prediction of fire ignition probabilities: comparing logistic regression and neural networks. Photogramm Eng Remote Sens 5:101–111

    Google Scholar 

  • Vega-Garcia C, Woodard PM, Titus SJ (1996) Applying neural network technology to human-caused wildfire occurrence prediction. AI Appl 10:9–18

    Google Scholar 

  • Vélez R (2001) Fire situation in Spain. In: Goldammer JG, Mutch RW, Pugliese P (eds) Global forest fire assessment 1990–2001. FAO, Rome

    Google Scholar 

  • Vilar del Hoyo L, Martínez Vega J, Martín Isabel MP (2008) Empleo de técnicas de regresión logística para la obtención de modelos de riesgo humano de incendio forestal a escala regional

  • Willis M (2004) Bushfire arson: a review of the literature. Australian Institute of Criminology, Canberra

    Google Scholar 

  • Wu H, Soh L-K, Samal A, Chen X-H (2008) Trend analysis of streamflow drought events in Nebraska. Water Resour Manag 22:145–164. doi:10.1007/s11269-006-9148-6

    Article  Google Scholar 

  • Zhang Y, Lim S, Sharples JJ (2016) Modelling spatial patterns of wildfire occurrence in South-Eastern Australia. Geomat Nat Hazards Risk. doi:10.1080/19475705.2016.1155501

    Google Scholar 

  • Zumbrunnen T, Pezzatti GB, Menéndez P et al (2011) Weather and human impacts on forest fires: 100 years of fire history in two climatic regions of Switzerland. For Ecol Manag 261:2188–2199. doi:10.1016/j.foreco.2010.10.009

    Article  Google Scholar 

  • Zumbrunnen T, Menéndez P, Bugmann H et al (2012) Human impacts on fire occurrence: a case study of hundred years of forest fires in a dry alpine valley in Switzerland. Reg Environ Chang 12:935–949. doi:10.1007/s10113-012-0307-4

    Article  Google Scholar 

Download references

Acknowledgments

The Spanish Ministry of Education has financed this work: FPU grant 13/06618. We would also like to thank the reviewers for their valuable comments, which have undoubtedly helped to improve this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos Rodrigues.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodrigues, M., Jiménez, A. & de la Riva, J. Analysis of recent spatial–temporal evolution of human driving factors of wildfires in Spain. Nat Hazards 84, 2049–2070 (2016). https://doi.org/10.1007/s11069-016-2533-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-016-2533-4

Keywords

Navigation