Natural Hazards

, Volume 84, Issue 3, pp 2049–2070 | Cite as

Analysis of recent spatial–temporal evolution of human driving factors of wildfires in Spain

  • Marcos Rodrigues
  • Adrián Jiménez
  • Juan de la Riva
Original Paper


Fire regimes are strongly dependent on human activities. Understanding the relative influence of human factors on wildfire is an important ongoing task especially in human-dominated landscapes such as the Mediterranean, where anthropogenic ignitions greatly surpass natural ignitions and human activities are modifying historical fire regimes. Most human drivers of wildfires have a temporal dimension, far beyond the appearance of change, and it is for this reason that we require an historical/temporal analytical perspective coupled to the spatial dimension. In this paper, we investigate and analyze spatial–temporal changes in the contribution of major human factors influencing forest fire occurrence, using Spanish historical statistical fire data from 1988 to 2012. We hypothesize that the influence of socioeconomic drivers on wildfires has changed over this period. Our method is based on fitting yearly explanatory regression models—testing several scenarios of wildfire data aggregation—using logit and Poisson generalized linear models to determine the significance thresholds of the covariates. We then conduct a trend analysis using the Mann–Kendall test to calculate and analyze possible trends in the explanatory power of human driving factors of wildfires. Finally, Geographically Weighted Regression Models are explored to examine potential spatial–temporal patterns. Our results suggest that some of the explanatory factors of logistic models do vary over time and that new explanatory factors might be considered (such as arson-related variables or climate factors), since some of the traditional ones seem to be losing significance in the presence–absence models, opposite to fire frequency models. In particular, the wildland–agricultural interface and wildland–urban interface appear to be losing explanatory power regarding ignition probability, and protected areas are becoming less significant in fire frequency models. GWR models revealed that this temporal behavior is not stationary neither over space nor time.


Trends Wildfire GLM GWR Human driving factors Occurrence 



The Spanish Ministry of Education has financed this work: FPU grant 13/06618. We would also like to thank the reviewers for their valuable comments, which have undoubtedly helped to improve this work.


  1. Archibald S, Lehmann CER, Gómez-Dans JL, Bradstock RA (2013) Defining pyromes and global syndromes of fire regimes. Proc Natl Acad Sci 110:6442–6447. doi: 10.1073/pnas.1211466110 CrossRefGoogle Scholar
  2. Bal M-C, Pelachs A, Perez-Obiol R et al (2011) Fire history and human activities during the last 3300 cal yr BP in Spain’s Central Pyrenees: the case of the Estany de Burg. Palaeogeogr Palaeoclimatol Palaeoecol 300:179–190. doi: 10.1016/j.palaeo.2010.12.023 CrossRefGoogle Scholar
  3. Calvo JL, Pueyo A (2008) Atlas Nacional de España: Demografía. Centro Nacional de Información Geográfica, MadridGoogle Scholar
  4. Carmona A, González ME, Nahuelhual L, Silva J (2012) Spatio-temporal effects of human drivers on fire danger in Mediterranean Chile. Bosque 33:321–328CrossRefGoogle Scholar
  5. CEE (1986) Reglamento (CEE) no 3529/1986 del Consejo, de 17 de noviembre de 1986, relativo a la protección de los bosques en la Comunidad contra los incendios. EUGoogle Scholar
  6. CEE (1992) Reglamento (CEE) no 2158/92 del Consejo, de 23 de julio de 1992, relativo a la protección de los bosques comunitarios contra los incendios. DO L 217 de 31.07.1992, EUGoogle Scholar
  7. Chelli S, Maponi P, Campetella G et al (2014) Adaptation of the Canadian fire weather index to Mediterranean forests. Nat Hazards 75:1795–1810. doi: 10.1007/s11069-014-1397-8 CrossRefGoogle Scholar
  8. Chuvieco E, Aguado I, Yebra M et al (2010) Development of a framework for fire risk assessment using remote sensing and geographic information system technologies. Ecol Model 221:46–58. doi: 10.1016/j.ecolmodel.2008.11.017 CrossRefGoogle Scholar
  9. Chuvieco E, Aguado I, Jurdao S et al (2012) Integrating geospatial information into fire risk assessment. Int J Wildland Fire. doi: 10.1071/WF12052 Google Scholar
  10. Darques R (2015) Mediterranean cities under fire. A critical approach to the wildland–urban interface. Appl Geogr 59:10–21. doi: 10.1016/j.apgeog.2015.02.008 CrossRefGoogle Scholar
  11. Drapela K, Drapelova I (2011) Application of Mann-Kendall test and the Sen’sslope estimates for trend detection in deposition data from Bílý Kříž (Beskydy Mts., the Czech Republic) 1997–2010. Beskdy Mendel University in BrnoGoogle Scholar
  12. Fotheringham AS, Brunsdon C, Charlton ME (2002) Geographically weighted regression: the analysis of spatially varying relationships. Wiley, ChichesterGoogle Scholar
  13. Galiana-Martin L, Herrero G, Solana J (2011) A wildland–urban interface typology for forest fire risk management in Mediterranean areas. Landsc Res 36:151–171. doi: 10.1080/01426397.2010.549218 CrossRefGoogle Scholar
  14. Ganteaume A, Camia A, Jappiot M et al (2013) a review of the main driving factors of forest fire ignition over Europe. Environ Manag 51:651–662. doi: 10.1007/s00267-012-9961-z CrossRefGoogle Scholar
  15. Hanley JA, McNeil BJ (1982) The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143:29–36CrossRefGoogle Scholar
  16. Harris S, Nicholls N, Tapper N (2014) Forecasting fire activity in Victoria, Australia, using antecedent climate variables and ENSO indices. Int J Wildland Fire 23:173–184CrossRefGoogle Scholar
  17. Henry BM (1945) Nonparametric tests against trend. Econometrica 13:245–259CrossRefGoogle Scholar
  18. Hijmans RJ, Cameron SE, Parra JL, et al (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. doi: 10.1002/joc.1276 CrossRefGoogle Scholar
  19. Hisdal H, Stahl K, Tallaksen LM, Demuth S (2001) Have streamflow droughts in Europe become more severe or frequent? Int J Climatol 21:317–333. doi: 10.1002/joc.619 CrossRefGoogle Scholar
  20. Kendall MG (1975) Rank correlation methods, 4th edn. Charles Griffin, LondonGoogle Scholar
  21. Koutsias N, Martínez-Fernández J, Allgöwer B (2010) Do factors causing wildfires vary in space? Evidence from geographically weighted regression. GIScience Remote Sens 47:221–240. doi: 10.2747/1548-1603.47.2.221 CrossRefGoogle Scholar
  22. Koutsias N, Xanthopoulos G, Founda D et al (2013) On the relationships between forest fires and weather conditions in Greece from long-term national observations (1894–2010). Int J Wildland Fire 22:493–507CrossRefGoogle Scholar
  23. Koutsias N, Allgöwer B, Kalabokidis K et al (2016) Fire occurrence zoning from local to global scale in the European Mediterranean basin: implications for multi-scale fire management and policy. iForest-Biogeosci For 9:195–204CrossRefGoogle Scholar
  24. Leone V, Koutsias N, Martínez J et al (2003) The human factor in fire danger assessment. In: Chuvieco E (ed) Wildland fire danger estimation and mapping. The Role of remote sensing data. World Scientific Publishing, SingaporeGoogle Scholar
  25. Leone V, Lovreglio R, Martín MP et al (2009) Human factors of fire occurrence in the Mediterranean. In: Chuvieco E (ed) Earth observation of wildland fires in Mediterranean ecosystems. Springer, Berlin Heidelberg, pp 149–170CrossRefGoogle Scholar
  26. Lynch AH, Beringer J, Kershaw P et al (2007) Using the paleorecord to evaluate climate and fire interactions in Australia. Annu Rev Earth Planet Sci 35:215–239. doi: 10.1146/ CrossRefGoogle Scholar
  27. MAGRAMA (2012) Los Incendios Forestales en España. Decenio 2001–2010. Ministerio de Agricultura, Alimentación y Medio Ambiente. Madrid. NIPO: 280-12-210-8 (en línea). 138 ppGoogle Scholar
  28. Mann ML, Batllori E, Moritz MA et al (2016) Incorporating anthropogenic influences into fire probability models: effects of human activity and climate change on fire activity in California. PLoS ONE 11:1–21. doi: 10.1371/journal.pone.0153589 CrossRefGoogle Scholar
  29. MAPA (1988a) ORDEN de 21 de marzo de 1988 por la que se establece un Plan de Acciones Prioritarias contra los Incendios Forestales. BOE 72, 24 de marzo de 1988, SpainGoogle Scholar
  30. MAPA (1988b) Real Decreto 875/1988, de 29 de julio, por el que se regula la compensación de gastos derivados de la extinción de incendios forestales. BOE 186, 4 de agosto de 1988, SpainGoogle Scholar
  31. Martínez J, Chuvieco E, Martín MP (2004a) Estimating human risk factors in wildland fires in Spain using logistic regression. In: II international symposium on fire economics, planning and policy: a global vision, CordobaGoogle Scholar
  32. Martínez J, Martínez-Vega J, Martín P (2004b) El factor humano en los incendios forestales: análisis de los factores socio-económicos relacionados con la incidencia de incendios forestales en España. In: Chuevico E, Martín P (eds) Nuevas tecnologías para la estimación del riesgo de incendios forestales. Consejo Superior de Investigaciones Científicas, Instituto de Economía y Geografía, Madrid, pp 101–142Google Scholar
  33. Martínez J, Vega-Garcia C, Chuvieco E (2009) Human-caused wildfire risk rating for prevention planning in Spain. J Environ Manag 90:1241–1252. doi: 10.1016/j.jenvman.2008.07.005 CrossRefGoogle Scholar
  34. Martínez J, Chuvieco E, Koutsias N (2013) Modelling long-term fire occurrence factors in Spain by accounting for local variations with geographically weighted regression. Nat Hazards Earth Syst 13:311–327CrossRefGoogle Scholar
  35. Massada AB, Syphard AD, Stewart SI, Radeloff VC (2012) Wildfire ignition-distribution modelling: a comparative study in the Huron–Manistee National Forest, Michigan, USA. Int J Wildland Fire. doi: 10.1071/WF11178 Google Scholar
  36. Minnich RA (1983) Fire mosaics in southern California and northern Baja California. Science 219:1287–1294. doi: 10.1126/science.219.4590.1287 CrossRefGoogle Scholar
  37. Moreno MV, Malamud BD, Chuvieco EA (2011) Wildfire frequency-area statistics in Spain. Procedia Environ Sci 7:182–187. doi: 10.1016/j.proenv.2011.07.032 CrossRefGoogle Scholar
  38. Moreno MV, Conedera M, Chuvieco E, Pezzatti GB (2014) Fire regime changes and major driving forces in Spain from 1968 to 2010. Environ Sci Policy 37:11–22. doi: 10.1016/j.envsci.2013.08.005 CrossRefGoogle Scholar
  39. Nakaya T, Fotheringham S, Charlton M, Brunsdon C (2009) Semiparametric geographically weighted generalised linear modelling in GWR4.0. In: Proceedings of Geocomputation 2009, pp 1–5Google Scholar
  40. Ortega M, Saura S, González-Avila S et al (2012) Landscape vulnerability to wildfires at the forest-agriculture interface: half-century patterns in Spain assessed through the SISPARES monitoring framework. Agrofor Syst 85:331–349. doi: 10.1007/s10457-011-9423-2 CrossRefGoogle Scholar
  41. Pausas J, Fernández-Muñoz S (2012) Fire regime changes in the Western Mediterranean Basin: from fuel-limited to drought-driven fire regime. Clim Chang 110:215–226. doi: 10.1007/s10584-011-0060-6 CrossRefGoogle Scholar
  42. Pausas JG, Keeley JE (2009) A burning story: the role of fire in the history of life. Bioscience 59:593–601CrossRefGoogle Scholar
  43. Pezzatti GB, Zumbrunnen T, Bürgi M et al (2013) Fire regime shifts as a consequence of fire policy and socio-economic development: an analysis based on the change point approach. For Policy Econ 29:7–18. doi: 10.1016/j.forpol.2011.07.002 CrossRefGoogle Scholar
  44. R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
  45. Randall DA, Wood RA, Bony S, et al (2007) Climate models and their evaluation. In: Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the IPCC (FAR). Cambridge University Press, pp 589–662Google Scholar
  46. Rodrigues M, de la Riva J (2014) An insight into machine-learning algorithms to model human-caused wildfire occurrence. Environ Model Softw 57:192–201. doi: 10.1016/j.envsoft.2014.03.003 CrossRefGoogle Scholar
  47. Rodrigues M, San Miguel J, Oliveira S et al (2013) An insight into spatial-temporal trends of fire ignitions and burned área in the European Mediterranean countries. J Earth Sci Eng 3:497–505Google Scholar
  48. Rodrigues M, de la Riva J, Fotheringham S (2014) Modeling the spatial variation of the explanatory factors of human-caused wildfires in Spain using geographically weighted logistic regression. Appl Geogr 48:52–63. doi: 10.1016/j.apgeog.2014.01.011 CrossRefGoogle Scholar
  49. Romero-Calcerrada R, Barrio-Parra F, Millington JDA, Novillo CJ (2010) Spatial modelling of socioeconomic data to understand patterns of human-caused wildfire ignition risk in the SW of Madrid (central Spain). Ecol Model 221:34–45. doi: 10.1016/j.ecolmodel.2009.08.008 CrossRefGoogle Scholar
  50. Salis M, Ager AA, Finney MA et al (2013) Analyzing spatiotemporal changes in wildfire regime and exposure across a Mediterranean fire-prone area. Nat Hazards 71:1389–1418. doi: 10.1007/s11069-013-0951-0 CrossRefGoogle Scholar
  51. San-Miguel-Ayanz J, Rodrigues M, Oliveira S et al (2012) Land cover change and fire regime in the European Mediterranean Region. In: Moreira F, Arianoutsou M, Corona P, De las Heras J (eds) Post-Fire management and restoration of southern European forests. Springer, Netherlands, pp 21–43CrossRefGoogle Scholar
  52. Sen PK (1968) Estimates of the regression coefficient based on Kendall’s Tau. J Am Stat As 63:1379–1389. doi: 10.1080/01621459.1968.10480934 CrossRefGoogle Scholar
  53. Syphard A, Clarke K, Franklin J (2007) Simulating fire frequency and urban growth in southern California coastal shrublands, USA. Landsc Ecol 22:431–445. doi: 10.1007/s10980-006-9025-y CrossRefGoogle Scholar
  54. Syphard AD, Radeloff VC, Keuler NS et al (2008) Predicting spatial patterns of fire on a southern California landscape. Int J Wildland Fire 17:602–613CrossRefGoogle Scholar
  55. Turco M, Bedia J, Di Liberto F et al (2016) Decreasing fires in Mediterranean Europe. PLoS ONE 11:1–19. doi: 10.1371/journal.pone.0150663 CrossRefGoogle Scholar
  56. Vasconcelos MJP, Silva S, Tomé M et al (2001) Spatial prediction of fire ignition probabilities: comparing logistic regression and neural networks. Photogramm Eng Remote Sens 5:101–111Google Scholar
  57. Vega-Garcia C, Woodard PM, Titus SJ (1996) Applying neural network technology to human-caused wildfire occurrence prediction. AI Appl 10:9–18Google Scholar
  58. Vélez R (2001) Fire situation in Spain. In: Goldammer JG, Mutch RW, Pugliese P (eds) Global forest fire assessment 1990–2001. FAO, RomeGoogle Scholar
  59. Vilar del Hoyo L, Martínez Vega J, Martín Isabel MP (2008) Empleo de técnicas de regresión logística para la obtención de modelos de riesgo humano de incendio forestal a escala regionalGoogle Scholar
  60. Willis M (2004) Bushfire arson: a review of the literature. Australian Institute of Criminology, CanberraGoogle Scholar
  61. Wu H, Soh L-K, Samal A, Chen X-H (2008) Trend analysis of streamflow drought events in Nebraska. Water Resour Manag 22:145–164. doi: 10.1007/s11269-006-9148-6 CrossRefGoogle Scholar
  62. Zhang Y, Lim S, Sharples JJ (2016) Modelling spatial patterns of wildfire occurrence in South-Eastern Australia. Geomat Nat Hazards Risk. doi: 10.1080/19475705.2016.1155501 Google Scholar
  63. Zumbrunnen T, Pezzatti GB, Menéndez P et al (2011) Weather and human impacts on forest fires: 100 years of fire history in two climatic regions of Switzerland. For Ecol Manag 261:2188–2199. doi: 10.1016/j.foreco.2010.10.009 CrossRefGoogle Scholar
  64. Zumbrunnen T, Menéndez P, Bugmann H et al (2012) Human impacts on fire occurrence: a case study of hundred years of forest fires in a dry alpine valley in Switzerland. Reg Environ Chang 12:935–949. doi: 10.1007/s10113-012-0307-4 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Marcos Rodrigues
    • 1
  • Adrián Jiménez
    • 1
  • Juan de la Riva
    • 1
  1. 1.GEOFOREST Group, IUCA, Department of Geography and Land ManagementUniversity of ZaragozaSaragossaSpain

Personalised recommendations