Natural Hazards

, Volume 84, Issue 1, pp 185–212 | Cite as

Assessing critical rainfall thresholds for landslide triggering by generating additional information from a reduced database: an approach with examples from the Betic Cordillera (Spain)

  • José Antonio Palenzuela
  • Jorge David Jiménez-Perálvarez
  • José Chacón
  • Clemente Irigaray
Original Paper


The denudation of young reliefs prone to landslides can have severe consequences for society and the environment. However, landslide databases and the additional information (landslide type, date and triggering factors) necessary to deal with landslide hazard assessment and the development of effective and reliable landslide warning systems are usually scarce or non-existent. In this way, by taking into account the date of landslide events and by expanding the analysis of cumulative rainfall from these dates to a broader time period that includes the days or months leading up to a landslide, the corresponding triggering rainfall threshold can be assessed more accurately. In this paper, a methodology based on a partial duration series analysis applied to rainfall variables allows the possibility to better understand precipitation patterns. Another advantage of analysing precipitation variables within a broader time period is the ability to identify greater accuracy rainfall anomalies such as extreme rainfalls with their return period related to a low number of dated landslide events (in this case, 20 landslide events). The landslide spatial distribution within a regional area requires the processing and analysis of data from multiple long-term historical daily rainfall records from different rainfall gauges, which notably increase the number of calculations to be dealt with. To overcome this inconvenience, these processes were streamlined by using macro-automation. Additionally, different rainfall durations can be interactively identified from graphical outputs that show anomalies on more than one rainfall variable after applying this methodology. Among these rainfall variables, the antecedent accumulated rainfall (A1) was found to be the most suitable to apply the occurrence probability analysis. When compared to other variables, the return period values of A1 were determined to be conservative, neither too high nor too low. Using this approach, the return period curve was shown to be an important graphic object in detecting uncommon rainfalls that are contemporaneous or previous to landslides. The relevant findings of this research show a power-law trend with α = 88.005 and β = 0.69 in the correlation of intensity and duration associated with antecedent cumulative rainfall (A1) anomalies. The mean return period for these anomalies resulted in 12.4 years, while for 50 % of the landslides, the recurrence interval was estimated in less than or equal to 3.6 years. In addition, significant differences were found between catalogued slope-cut failures and natural landslides. Moreover, differences were also found between simplified types of natural landslides.


Return period Partial duration series Rainfall threshold Landslide Betic Cordillera 



The implementation of some statistical formulae into the worksheets and macros was possible thanks to the guidelines provided by Ronald. J. Oosterbaan, researcher of International Institute for Land Reclamation and Improvement (ILRI), Wageningen, The Netherlands. Rainfall records have been supplied by the National Meteorological Institute of Spain. This research was supported by the project CGL2008-04854 funded by the Ministry of Science and Education of Spain. It was developed in the RMN-121 Research Group funded by the Andalusian Research Plan.


  1. AEMET (2010) Resumen anual climatológico 2010. Agencia Estatal de Meteorología. URL: (Last accessed: 13/11/2014)
  2. AEMET (2014) Agencia Estatal de Meteorología. URL: (Last accessed: 13/11/2014)
  3. Agencia de Medio Ambiente y Agua (2014) Red de información Ambiental de Andalucía (REDIAM). Consejería de Medio Ambiente y Ordenación del Territorio, Junta de AndalucíaGoogle Scholar
  4. Aleotti P (2004) A warning system for rainfall-induced shallow failures. Eng Geol 73(3–4):247–265. doi: 10.1016/j.enggeo.2004.01.007 CrossRefGoogle Scholar
  5. Aleotti P, Chowdhury R (1999) Landslide hazard assessment: summary review and new perspectives. Bull Eng Geol Environ 58(1):21–44CrossRefGoogle Scholar
  6. Aleotti P, Canuti P, Falorni G, Fanti R, Grimaldi G, Guida D, Lombardi G, Pappalardo G, Polloni G (2003) Assessment of potential debris flow inundation areas on a small alluvial fan in southern Italy. In: Proceedings of the international conference on fast movements—prediction and prevention, Sorrento, May, pp 11–13Google Scholar
  7. Ayala FJ, Elizaga E, González de Vallejo LI (1987) Impacto económico y social de los riesgos geológicos en España. In: Serie Geológica Ambiental. IGME, Madrid, p 134Google Scholar
  8. Barnett V (1975) Probability plotting methods and order statistics. J R Stat Soc: Ser C (Appl Stat) 24(1):95–108. doi: 10.2307/2346708 Google Scholar
  9. Bonnard C, Noverraz F (2001) Influence of climate change on large landslides: assessment of long term movements and trends. In: Proceedings of the international conference on landslides, Gluckauf, Essen, Davos, pp 121–138Google Scholar
  10. Borga M, Dalla Fontana G, Da Ros D, Marchi L (1998) Shallow landslide hazard assessment using a physically based model and digital elevation data. Environ Geol 35(2–3):81–88. doi: 10.1007/s002540050295 CrossRefGoogle Scholar
  11. Borga M, Dalla Fontana G, Cazorzi F (2002) Analysis of topographic and climatic control on rainfall-triggered shallow landsliding using a quasi-dynamic wetness index. J Hydrol 268(1–4):56–71. doi: 10.1016/s0022-1694(02)00118-x CrossRefGoogle Scholar
  12. Brunetti MT, Luino F, Vennari C, Peruccacci S, Biddoccu M, Valigi D, Luciani S, Cirio CG, Rossi M, Nigrelli G, Ardizzone F, Palma M, Guzzetti F (2013) Rainfall thresholds for possible occurrence of shallow landslides and debris flows in Italy. In: Schneuwly-Bollschweiler M, Stoffel M, Rudolf-Miklau F (eds) Dating torrential processes on fans and cones: methods and their application for hazard and risk assessment. Springer, Dordrecht, pp 327–339. doi: 10.1007/978-94-007-4336-6_22
  13. Campbell RH (1975) Soil slips, debris flows, and rainstorms in the Santa Monica Mountains and vicinity, Southern California survey professional paper. US Geological 851:51Google Scholar
  14. Cannon S, Gartner J (2005) Wildfire-related debris flow from a hazards perspective. Debris-flow hazards and related phenomena, vol Sec. 15. Springer, Berlin, pp 363–385. doi: 10.1007/3-540-27129-5_15 CrossRefGoogle Scholar
  15. Cardinali M, Reichenbach P, Guzzetti F, Ardizzone F, Antonini G, Galli M, Cacciano M, Castellani M, Salvati P (2002) A geomorphological approach to the estimation of landslide hazards and risks in Umbria, Central Italy. Nat Hazards Earth Syst Sci 2(1–2):57–72. doi: 10.5194/nhess-2-57-2002 CrossRefGoogle Scholar
  16. Casale R, Fantecchi R, Flageolet JC (1994) Temporal occurrence and forecasting of landslides in the European Community. In: Casale R, Fantecchi R, Flageolet JC (eds) Final report. Programme Epoch (Ct. 90 0025). European Community, p 957Google Scholar
  17. Castillo A, Martín-Rosales W, Osorio R (1996) Erosión hídrica en la cuenca del río Guadalfeo (Granada); estudio comparativo de las metodologías de la U.S.L.E y Fournier. Geogaceta 19:142–145Google Scholar
  18. Chacón J (2003) Geologic and Geomorphologic Risks: Identification, Analysis and Consequence prevention of Landslides. Áreas: revista Internacional de Ciencias Sociales (Ejemplar dedicado a: Los procesos de riesgo con origen natural: una constante en la relación entre hombre y medio). Ediciones de la Universidad de Murcia. Murcia 23:33–64Google Scholar
  19. Chacón J, Irigaray C, Fernandez T, El Hamdouni R (2006a) Engineering geology maps: landslides and geographical information systems. Bull Eng Geol Environ 65(4):341–411. doi: 10.1007/s10064-006-0064-z CrossRefGoogle Scholar
  20. Chacón J, Irigaray Fernández C, Fernández T, El Hamdouni R (2006b) Landslides in the main urban areas of the Granada province, Andalucia, Spain. IAEG 2006. NottinghamGoogle Scholar
  21. Chacón J, Irigaray C, El Hamdouni R, Jiménez-Perálvarez J (2010) Diachroneity of landslides. In: Williams AL, Pinches GM, Chin CY, McMorran TJ and Massey CI (eds.) Geologically Active. Taylor & Francis Group. CRC Press-Balkema, vol. 1, p. 999-1006Google Scholar
  22. Chacón J, Irigaray C, El Hamdouni R, Valverde-Palacios I, Valverde-Espinosa I, Calvo F, Jiménez-Perálvarez J, Chacon E, Fernández P, Garrido J, Lamas F (2012) Engineering and Environmental Geology of Granada and its Metropolitan Area (Spain). Environ Eng Geosci 18(3):217–260. doi: 10.2113/gseegeosci.18.3.217 CrossRefGoogle Scholar
  23. Community European (2007) Directive 2007/2/EC of the European Parliament and of the Council of 14 March 2007 establishing an Infrastructure for Spatial Information in the European Community (INSPIRE). Off J Eur Union L108:14Google Scholar
  24. Corominas J (2000) Landslides and climate. Keynote lecture. In: Bromhead E, Dixon N, Ibsen ML, Cardiff AA (eds) Proceedings 8th international symposium on landslides. Balkema, vol 4, pp 1–33Google Scholar
  25. Corominas J, Moya J (2008) A review of assessing landslide frequency for hazard zoning purposes. Eng Geol 102(3–4):193–213. doi: 10.1016/j.enggeo.2008.03.018 CrossRefGoogle Scholar
  26. Crosta GB, Frattini P (2001) Rainfall thresholds for triggering soil slips and debris flow. In: Mugnai A, Guzzetti F, Roth G (eds) Proceedings 2nd EGS Plinius conference on Mediterranean Storms, Siena, pp 463–487Google Scholar
  27. Crosta G, Frattini P (2003) Distributed modelling of shallow landslides triggered by intense rainfall. Nat Hazards Earth Syst Sci 3(1–2):81–93. doi: 10.5194/nhess-3-81-2003 CrossRefGoogle Scholar
  28. Crozier M (1986) Landslides: causes, consequences and environment. Croom Helm, London, p 252Google Scholar
  29. Crozier MJ, Eyles RJ (1980) Assessing the probability of rapid mass movement. In Proceedings of 3rd Australia-New Zealand Conference on Geomechanics, Wellington, N.Z.: Institution of Professional Engineers New Zealand, 1980: 2-47-2-51. Proceedings of Technical Groups. Vol. 6, p. 247-251Google Scholar
  30. CumFreq (2014) CumFreq: Cumulative frequency analysis with probability distribution fitting. URL: [Last accessed: 05/09/2014]
  31. Cunnane C (1973) A particular comparison of annual maxima and partial duration series methods of flood frequency prediction. J Hydrol 18(3–4):257–271. doi: 10.1016/0022-1694(73)90051-6 CrossRefGoogle Scholar
  32. D’Odorico P, Fagherazzi S (2003) A probabilistic model of rainfall-triggered shallow landslides in hollows: A long-term analysis. Water Resources Research 39 (9): ESG61-ESG614Google Scholar
  33. De Vita P, Napolitano E, Godt J, Baum R (2013) Deterministic estimation of hydrological thresholds for shallow landslide initiation and slope stability models: case study from the Somma-Vesuvius area of southern Italy. Landslides 10(6):713–728. doi: 10.1007/s10346-012-0348-2 CrossRefGoogle Scholar
  34. Dikau R, Cavallin A, Jäger S (1996) Databases and GIS for landslide research in Europe. Geomorphology 15(3):227–239CrossRefGoogle Scholar
  35. Diputación de Granada and the Instituto Geológico Minero de España (2007) Atlas de Riesgos Naturales en la Provincia de Ganada. Ferrer M (dir). ISBN/ISSN: 978-84-7807-438-9Google Scholar
  36. Duggal KN, Soni JP (2005) Statistics Applied to Hydrology. Elements of water resources engineering. New Age International Publishers. New Delhi, p. 47. ISBN/ISSN: 81-224-0507-9Google Scholar
  37. Dykes AP, Gunn J, Convery KJ (2008) Landslides in blanket peat on Cuilcagh Mountain, northwest Ireland. Geomorphology 102(3–4):325–340. doi: 10.1016/j.geomorph.2008.04.003 CrossRefGoogle Scholar
  38. El Hamdouni R (2001) Estudio de Movimientos de Ladera en la Cuenca del Río Ízbor mediante un SIG: Contribución al Conocimiento de la Relación entre Tectónica Activa e Inestabilidad de Vertientes. Unpublished PhD Thesis. Department of Civil Engineering, University of Granada, Spain, p 429Google Scholar
  39. El Hamdouni R, Irigaray C, Fernández T, Chacón J, Keller EA (2008) Assessment of relative active tectonics, southwest border of the Sierra Nevada (southern Spain). Geomorphology 96(1–2):150–173. doi: 10.1016/j.geomorph.2007.08.004 CrossRefGoogle Scholar
  40. Endo (1969) Probable distribution of the amount of rainfall causing landslides, Annual Report 1968. Hokkaico Branch, For. Exp. Stn., Sapporo. Japan, pp 122–136Google Scholar
  41. ESRI (2012) ArGIS Desktop 10.1. Environmental System Research Institute, Inc (ESRI)Google Scholar
  42. Fell R, Corominas J, Bonnard C, Cascini L, Leroi E, Savage WZ (2008) Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Eng Geol 102(3–4):85–98. doi: 10.1016/j.enggeo.2008.03.022 CrossRefGoogle Scholar
  43. Fernández T, Irigaray C, El Hamdouni R, Chacón J (2003) Methodology for landslide susceptibility mapping by means of a GIS. Application to the Contraviesa Area (Granada, Spain). Nat Hazards 30(3):297–308. doi: 10.1023/B:NHAZ.0000007092.51910.3f CrossRefGoogle Scholar
  44. Fernández P, Irigaray C, Jimenez J, El Hamdouni R, Crosetto M, Monserrat O, Chacon J (2009) First delimitation of areas affected by ground deformations in the Guadalfeo River Valley and Granada metropolitan area (Spain) using the DInSAR technique. Eng Geol 105(1–2):84–101. doi: 10.1016/j.enggeo.2008.12.005 CrossRefGoogle Scholar
  45. Fernández T, Pérez J, Delgado J, Cardenal F, Irigaray C, Chacón J (2011) Evolution of a diachronic landslide by comparison between different DEMs obtained from Digital Photogrammetry Techniques in Las Alpujarras (Granada, Southern Spain). In: Conference of geoinformation for disaster management (GI4DM), AntalyaGoogle Scholar
  46. Frattini P, Crosta GB, Fusi N, Dal Negro P (2004) Shallow landslides in pyroclastic soils: A distributed modelling approach for hazard assessment. Eng Geol 73(3–4):277–295. doi: 10.1016/j.enggeo.2004.01.009 CrossRefGoogle Scholar
  47. Glade T, Crozier M, Smith P (2000) Applying probability determination to refine landslide-triggering rainfall thresholds using an empirical “Antecedent Daily Rainfall Model”. Pure appl Geophys 157(6–8):1059–1079. doi: 10.1007/s000240050017 CrossRefGoogle Scholar
  48. Gómez-Pugnaire MT, Galindo-Zaldívar J, Rubatto D, González-Lodeiro F, López Sánchez-Vizcaíno V, Jabaloy A (2004) A reinterpretation of the Nevado-Filábride and Alpujárride Complexes (Betic Cordillera): Field, petrography and U-Pb ages from orthogneisses (western Sierra Nevada, S Spain). Schweiz Mineral Petrogr Mitt 84(3):303–322. doi: 10.1016/j.lithos.2010.07.002 Google Scholar
  49. Gumbel EJ (1968) Statistics of extremes. United States of America, Columbia University Press, New York, pp 28–34Google Scholar
  50. Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 31(1–4):181–216. doi: 10.1016/S0169-555X(99)00078-1 CrossRefGoogle Scholar
  51. Guzzetti F, Cardinali M, Reichenbach P, Cipolla F, Sebastiani C, Galli M, Salvati P (2004) Landslides triggered by the 23 November 2000 rainfall event in the Imperia Province, Western Liguria, Italy. Eng Geol 73(3–4):229–245. doi: 10.1016/j.enggeo.2004.01.006 CrossRefGoogle Scholar
  52. Guzzetti F, Peruccacci S, Rossi M, Stark CP (2007) Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorol Atmos Phys 98(3–4):239–267. doi: 10.1007/s00703-007-0262-7 CrossRefGoogle Scholar
  53. Guzzetti F, Peruccacci S, Rossi M, Stark C (2008) The rainfall intensity–duration control of shallow landslides and debris flows: an update. Landslides 5(1):3–17. doi: 10.1007/s10346-007-0112-1 CrossRefGoogle Scholar
  54. Helsel DR, Hirsch RM (2002) Chapter A3 statistical methods in water resources. Hydrologic analysis and interpretation. Tech Water-Resour Investig US Geol Surv 4:1–8Google Scholar
  55. Hromadka TV, Phillips M (2010) Use of rainfall statistical return periods to determine threshold for mass wasting events. Environ Eng Geosci 16(4):343–356. doi: 10.2113/gseegeosci.16.4.343 CrossRefGoogle Scholar
  56. Ibsen M-L, Brunsden D (1996) The nature, use and problems of historical archives for the temporal occurrence of landslides, with specific reference to the south coast of Britain, Ventnor. Isle of Wight. Geomorphology 15(3–4):241–258. doi: 10.1016/0169-555X(95)00073-E CrossRefGoogle Scholar
  57. IDEAL (2014) Historia. URL: (Last accessed: 15/9/2014)
  58. IGN (2008–2012) Instituto Geográfico Nacional de España. Plan Nacional de Ortofotografía Aérea (PNOA). Ministerio de Fomento. Dirección General del Instituto Geográfico Nacional. URL: (Last accessed: 28/02/2013)
  59. Innes JL (1983) Debris flows. Prog Phys Geog 7:469–501CrossRefGoogle Scholar
  60. Irigaray C, Palenzuela JA (2013) Análisis de la actividad de movimientos mediante láser escáner terrestre en el suroeste de la Cordillera Bética (España). Revista de Geología Aplicada a la Ingeniería y al Ambiente 31:53–67Google Scholar
  61. Irigaray C, Fernández T, El Hamdouni R, Chacón J (1999) Verification of landslide susceptibility mapping: a case study. Technical report. Earth Surf Proc Land 24:537–544CrossRefGoogle Scholar
  62. Irigaray C, Lamas F, El Hamdouni R, Fernández T, Chacón J (2000) The importance of the precipitation and the susceptibility of the slopes for the triggering of landslides along the roads. Nat Hazards 21(1):65–81. doi: 10.1023/a:1008126113789 CrossRefGoogle Scholar
  63. Irigaray C, Fernandez T, El Hamdouni R, Chacon J (2007) Evaluation and validation of landslide-susceptibility maps obtained by a GIS matrix method: examples from the Betic Cordillera (southern Spain). Nat Hazards 41(1):61–79. doi: 10.1007/s11069-006-9027-8 CrossRefGoogle Scholar
  64. Iverson RM (2000) Landslide triggering by rain infiltration. Water Resour Res 36(7):1897–1910. doi: 10.1029/2000wr900090 CrossRefGoogle Scholar
  65. Jenks GF (1967) The data model concept in statistical mapping. Int Yearbook Cartogr 7:186–190Google Scholar
  66. Jibson RW (1989) Debris flows in southern Puerto Rico. Geol Soc Am Spe Pap 236:29–56. doi: 10.1130/SPE236-p29 Google Scholar
  67. Jiménez J, Irigaray C, El Hamdouni R, Fernandez T, Chacon J (2005) Rasgos geomorfológicos y movimientos de ladera en la Cuenca Alta del río Guadalfeo, sector Cádiar-Órgiva (Granada). Actas del VI Simposio Nacional de Taludes y Laderas Inestables 2:891–902Google Scholar
  68. Jiménez-Perálvarez JD (2012) Movimientos de ladera en la vertiente meridional de sierra nevada (Granada, España): identificación, análisis y cartografía de susceptibilidad y peligrosidad mediante SIG. Unpublished PhD Thesis. Department of Civil Engineering. University of Granada, Spain, p 210. ISBN: 9788490282892Google Scholar
  69. Jiménez-Perálvarez JD, Irigaray C, El Hamdouni R, Chacón J (2009) Building models for automatic landslide-susceptibility analysis, mapping and validation in ArcGIS. Nat Hazards 50(3):571–590. doi: 10.1007/s11069-008-9305-8 CrossRefGoogle Scholar
  70. Jiménez-Perálvarez JD, Irigaray C, El Hamdouni R, Chacón J (2011) Landslide-susceptibility mapping in a semi-arid mountain environment: an example from the southern slopes of Sierra Nevada (Granada, Spain). Bull Eng Geol Environ 70(2):265–277CrossRefGoogle Scholar
  71. Keller EA, Sanz de Galdeano C, Chacón J (1996) Tectonic geomorphology and earthquake hazard of Sierra Nevada, Southern Spain. In: Chacón J, Rosua JL (eds) 1ª Conferencia Internacional Sierra Nevada. Granada, pp 201–218Google Scholar
  72. Kim SK, Hong WP, Kim YK (1991) Prediction of rainfall-triggered landslides in Korea. In: Bell C (ed) 6th international symposium on landslides, vol 2. A.A. Balkema, RotterdamGoogle Scholar
  73. Köeppen (1936) Das geographische system der klimate. In: Köeppen W, Geiger R (eds) Handbuch der klimatologie, 1C. Gebrüder borntraeger, Berlin, p 44Google Scholar
  74. Lacasse S, Nadim F (2009) Landslide risk assessment and mitigation strategy. In: Sassa K, Canuti P (eds) Landslides—disaster risk reduction. Springer, Berlin, Sec. 3, p 31–61. ISBN/ISSN: 978-3-540-69966-8. doi: 10.1007/978-3-540-69970-5_3
  75. Li C, Ma T, Zhu X, Li W (2011) The power-law relationship between landslide occurrence and rainfall level. Geomorphology 130(3–4):221–229. doi: 10.1016/j.geomorph.2011.03.018 CrossRefGoogle Scholar
  76. Lumb P (1975) Slope failure in Hong Kong. Q J Eng Geol 8:31–65CrossRefGoogle Scholar
  77. Ma T, Li C, Lu Z, Wang B (2014) An effective antecedent precipitation model derived from the power-law relationship between landslide occurrence and rainfall level. Geomorphology 216:187–192. doi: 10.1016/j.geomorph.2014.03.033 CrossRefGoogle Scholar
  78. Makkonen L, Pajari M (2014) Defining sample quantiles by the true rank probability. J Prob Stat. Article ID 326579, p 6. doi: 10.1155/2014/326579
  79. Mkhandi S, Opere A, Willems P (2005) Comparison between annual maximum and peaks over threshold models for flood frequency prediction. In International conference of UNESCO Flanders FIT FRIEND/Nile project–towards a better cooperation, Sharm-El-Sheikh, Egypt, CD-ROM proceedingsGoogle Scholar
  80. Mohssen M (2009) Partial duration series in the annual domain. 18th World IMACS/MODSIM Congress. Cairns, Australia, pp 2694–2700Google Scholar
  81. Oosterbaan RJ (1988) Frequency predictions and their binomial confidence limits. International Commision on Irrigation and Drainage, Special Technical Session, Economic Aspects of Flood Control and non Structural Measures, DubrovnikGoogle Scholar
  82. Palenzuela JA, Irigaray C, Jiménez-Perálvarez JD, Chacón J (2013) Application of terrestrial laser scanner to the assessment of the evolution of diachronic landslides. In: Margottini C, Canuti P, Sassa K (eds) Landslide science and practice. Springer, Berlin, Sec. 68, pp 517–523. doi:  10.1007/978-3-642-31445-2_68
  83. Palenzuela JA, Marsella M, Nardinocchi C, Pérez JL, Fernández T, Chacón J, Irigaray C (2014) Landslide detection and inventory by integrating LiDAR data in a GIS environment. Landslides. doi: 10.1007/s10346-014-0534-5
  84. Panizza M (1996) 3 Geomorphological hazard. In: Mario P (eds) Developments in earth surface processes. Elsevier, vol 4, pp 75–76. ISBN/ISSN: 0928-2025. doi:  10.1016/S0928-2025(96)80020-4
  85. Papa MN, Medina V, Ciervo F, Bateman A (2013) Derivation of critical rainfall thresholds for shallow landslides as a tool for debris flow early warning systems. Hydrol Earth Syst Sci 17(10):4095–4107. doi: 10.5194/hess-17-4095-2013 CrossRefGoogle Scholar
  86. Petley D (2012) Global patterns of loss of life from landslides. Geology. The Geological Society of America, vol 40. 10, pp 927–930. ISBN/ISSN: 0091-7613. doi:  10.1130/G33217.1
  87. Red de Información Ambiental de Andalucía (REDIAM) (2016) Precipitación media anual en Andalucía: periodo 1971–2000. Consejería de Medio Ambiente, Junta de Andalucía. URL:
  88. Reichenbach P, Cardinali M, De Vita P, Guzzetti F (1998) Regional hydrological thresholds for landslides and floods in the Tiber River Basin (central Italy). Environ Geol 35(2–3):146–159. doi: 10.1007/s002540050301 CrossRefGoogle Scholar
  89. Ruiz Sinoga JD, Martinez Murillo JF (2009) Effects of soil surface components on soil hydrological behaviour in a dry Mediterranean environment (Southern Spain). Geomorphology 108(3–4):234–245. doi: 10.1016/j.geomorph.2009.01.012 CrossRefGoogle Scholar
  90. Schuster RL (1978) Introduction. In: Schuster RL, Krizek RJ (eds) Landslides—analysis and control, Chapter 1, pp 1–10Google Scholar
  91. Schutt B (2005) Late quaternary environmental change on the Iberian Peninsula. Erde 136(1):3Google Scholar
  92. Spizzichino D, Margottini C, Trigila A, Iadanza C, Linser S (2010) Landslides. In: Ludlow D (ed) Mapping the impacts of natural hazards and technological accidents in Europe—An overview of the last decade, chapter 9, pp 81–93. EEA Technical report No 13/2010, 144p. ISBN 978-92-9213-168-5. ISSN 1725-2237. doi:  10.2800/62638
  93. Spizzichino D, Margottini C, Trigila A, Iadanza C (2013) Landslide impacts in Europe: weaknesses and strengths of databases available at European and National Scale. In: Margottini C, Canuti P, Sassa K (eds) Landslide science and practice vol 1: landslide inventory and susceptibility and hazard zoning. Springer, Berlin, pp 73–80. ISBN 978-3-642-31324-0. doi:  10.1007/978-3-642-31325-7_9
  94. Suárez RR, Regueiro M (1997) Guía ciudadana de los Riesgos Geológicos. I.C.O.G, MadridGoogle Scholar
  95. Terlien MTJ (1996) Modelling spatial and temporal variations in rainfall-triggered landslides. PhD thesis. ITC. Enschede. Holland, vol 32, p 251. ISBN/ISSN: 9061641152Google Scholar
  96. Terlien MTJ (1998) The determination of statistical and deterministic hydrological landslide-triggering thresholds. Environ Geol 35(2–3):124–130. doi: 10.1007/s002540050299 CrossRefGoogle Scholar
  97. Thornes JB, Alcántara-Ayala I (1998) Modelling mass failure in a Mediterranean mountain environment: climatic, geological, topographical and erosional controls. Geomorphology 24(1):87–100. doi: 10.1016/S0169-555X(97)00103-7 CrossRefGoogle Scholar
  98. Trujillo F (1995) III. Clima e información meteorológica PLAN INFOCA. Un plan de acción al servicio del monte mediterráneo andaluz. Consejería de Medio Ambiente. Junta de Andalucía. ISBN: 84-95785-88-984-95785-88-9Google Scholar
  99. UNESCO (1973–1979) Annual summaries of information on natural disasters, 1971–1975. UNESCO, ParisGoogle Scholar
  100. Van Den Eeckhaut M, Hervás J (2012) State of the art of national landslide databases in Europe and their potential for assessing landslide susceptibility, hazard and risk. Geomorphology 139–140:545–558. doi: 10.1016/j.geomorph.2011.12.006 CrossRefGoogle Scholar
  101. Varnes DJ (1984) Landslide Hazard Zonation: a Review of Principles and Practice. Commision on Landslides of IAEG, UNESCO. United Nations Educational, Scientific and Cultural Organization. Paris. Nat Hazards 3:61Google Scholar
  102. Vennari C, Gariano SL, Antronico L, Brunetti MT, Iovine G, Peruccacci S, Terranova O, Guzzetti F (2014) Rainfall thresholds for shallow landslide occurrence in Calabria, southern Italy. Nat Hazards Earth Syst Sci 14(2):317–330. doi: 10.5194/nhess-14-317-2014 CrossRefGoogle Scholar
  103. Weibull W (1939) A statistical theory of the strength of materials. Ing Velenskaps Akad Handl 151:1–45Google Scholar
  104. White ID, Mottershead DN, Harrison JJ (1996) Environmental systems, 2nd edn. Chapman and Hall, London, p 616CrossRefGoogle Scholar
  105. Wieczorek G, Glade T (2005) Climatic factors influencing occurrence of debris flows. Debris-flow hazards and related phenomena. Springer, Berlin, Sec. 14, pp 325–362. ISBN/ISSN: 978-3-540-20726-9. doi: 10.1007/3-540-27129-5_14
  106. Wilson RC (1989) Rainstorms, pore pressures, and debris flows: a theoretical framework. In: Morton DM, Salder PM (eds) Landslides in a semi-arid environment. Publications of the Inland Geological Society, 2: 1. California, vol 2Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • José Antonio Palenzuela
    • 1
  • Jorge David Jiménez-Perálvarez
    • 1
  • José Chacón
    • 1
  • Clemente Irigaray
    • 1
  1. 1.Department of Civil Engineering, ETSICCPUniversity of GranadaGranadaSpain

Personalised recommendations