Natural Hazards

, Volume 83, Issue 2, pp 909–928 | Cite as

Local indices for the South American monsoon system and its impacts on Southeast Brazilian precipitation patterns

  • David Marcolino Nielsen
  • Marcio Cataldi
  • André Luiz Belém
  • Ana Luiza Spadano Albuquerque
Original Paper


The South American monsoon system (SAMS) plays a fundamental role in the precipitation regime of the most populous and economically important regions in Brazil. The South Atlantic Convergence Zone (SACZ) is a main component of the SAMS, characterizing its active phase, and is often associated with intense rainfall events: Strong and persistent episodes cause severe floods and landslides, while weak and sparse episodes are associated with droughts. The variability of the convergence zone caused great natural disasters in Southeast Brazil, associated with extreme precipitation conditions: 3562 landslides killed 947 people in Rio de Janeiro state in 2011, while a shortage of water in São Paulo affected around 20 million people between 2014 and 2015. In the present study, we build SACZ configuration series for the period between January 2000 and June 2014 and use them as indicators for the SAMS to quantify its influence on several atmospheric variables. Based on a principal component analysis, we present indices that identify the configuration of the SACZ in a local scale. The indices reached strong accuracy rates, especially for identifying days of extreme rainfall events associated with the SAMS and may, thus, serve as decision-making tools to help prepare for their impacts. Furthermore, the indices are composed by common variables simulated by numerical weather and climate models, other than precipitation, which is often a not very reliable output. The applied methodology is easily reproducible and different variables may be used to compose indices for different regions—an advantage of this local-scale approach.


SAMS SACZ South Atlantic Convergence Zone Intense rainfall Monsoon index 



We are thankful to Raquel Brisson, Beatriz Malta and Ana Roland for their support, to Fundação Carlos Chagas Filho de Amparo à Pesquisa do Rio de Janeiro (FAPERJ) for providing financial aid and to the reviewers for their valuable contributions.


  1. Ahern M, Kovats RS, Wilkinson P, Few R, Matthies F (2005) Global health impacts of floods: epidemiologic evidence. Epidemiol Rev 27:36–46. doi: 10.1093/epirev/mxi004 CrossRefGoogle Scholar
  2. Ambrizzi T, Ferraz SE (2015) An objective criterion for determining the South Atlantic Convergence Zone. Front Environ Sci 3:23CrossRefGoogle Scholar
  3. Andrade FM, Marton E (2008) Caracterização espacial dos eventos de ZCAS nos verões de 2005/2006 e 2006/2007. In: XV Congresso Brasileiro de Meteorologia, São Paulo, SP. Anais do XV Congresso Brasileiro de Meteorologia. SBMETGoogle Scholar
  4. Avelar AS, Netto AL, Lacerda WA, Becker LB, Mendonça MB (2013) Mechanisms of the recent catastrophic landslides in the mountainous range of Rio de Janeiro, Brazil. In: Landslide science and practice. Springer, Berlin, pp 265–270. doi: 10.1007/978-3-642-31337-0_34
  5. Barbosa HA, Kumar TL, Silva LRM (2015) Recent trends in vegetation dynamics in the South America and their relationship to rainfall. Nat Hazards 77(2):883–899CrossRefGoogle Scholar
  6. Bluestein HB (1992) Synoptic-dynamic meteorology in midlatitudes. Principles of kinematics and dynamics, vol 1. Oxford University Press, OxfordGoogle Scholar
  7. Carvalho LM, Jones C, Liebmann B (2002) Extreme precipitation events in southeastern South America and large-scale convective patterns in the South Atlantic convergence zone. J Clim 15(17):2377–2394CrossRefGoogle Scholar
  8. Carvalho LM, Jones C, Liebmann B (2004) The South Atlantic convergence zone: intensity, form, persistence, and relationships with intraseasonal to interannual activity and extreme rainfall. J Clim 17(1):88–108CrossRefGoogle Scholar
  9. Carvalho LM, Silva AE, Jones C, Liebmann B, Dias PLS, Rocha HR (2011) Moisture transport and intraseasonal variability in the South America monsoon system. Clim Dyn 36(9–10):1865–1880CrossRefGoogle Scholar
  10. Climanálise (2011) Boletim de Monitoramento e Análise Climática, vol 26, no 1. Centro de Previsão do Tempo e Estudos Climáticos and Instituto Nacional de Pesquisas Espaciais (CPTEC/INPE), Brazil. Accessed July 2015
  11. Climanálise (2000–2014) Boletim de Monitoramento e Análise Climática, vol 15–26, no 1–6. Centro de Previsão do Tempo e Estudos Climáticos and Instituto Nacional de Pesquisas Espaciais (CPTEC/INPE), Brazil. Accessed July 2015
  12. Coelho CA, Cardoso DH, Firpo MA (2015a) Precipitation diagnostics of an exceptionally dry event in São Paulo Brazil. Theor Appl Climatol. doi: 10.1007/s00704-015-1540-9 Google Scholar
  13. Coelho CA, de Oliveira CP, Ambrizzi T, Reboita MS, Carpenedo CB, Campos JLPS, Rehbein A (2015b) The 2014 southeast Brazil austral summer drought: regional scale mechanisms and teleconnections. Clim Dyn. doi: 10.007/s00382-015-2800-1 Google Scholar
  14. Contador CS, Nielsen DM, Smiderle OSM, Cataldi M, da Hora MAGM (2013) Avaliação da Influência da Umidade na Primavera da Região Amazônica na Ocorrência da ZCAS. In: V Simpósio Internacional de Climatologia, 2013, Florianópolis. Anais do V Simpósio Internacional de ClimatologiaGoogle Scholar
  15. Dourado F, Arraes TC and Silva M (2012) O Megadesastre da Região Serrana do Rio de Janeiro: as causas do evento, os mecanismos dos movimentos de massa e a distribuição espacial dos investimentos de reconstrução no pós-desastre. Anuário do Instituto de Geociências, 35(2):43–54. ISSN 0101-9759. doi: 10.11137/2012_2_43_54
  16. Drumond ARM, Ambrizzi T (2005) The role of SST on the South American atmospheric circulation during January, February and March 2001. Clim Dyn 24(7–8):781–791CrossRefGoogle Scholar
  17. Ferreira NJ, Sanches M, Silva Dias MAF (2004) Composição da zona de convergência do Atlântico Sul em períodos de El Niño e La Niña. Rev Bras Meteorol 19(1):89–98Google Scholar
  18. Folha de São Paulo (2004) Chega a nove o número de mortos em Minas por causa das chuvas. Cotidiano. Accessed 22 Nov 2015
  19. Folha de São Paulo (2013) Espírito Santo enfrenta a maior chuva da história, afirma governo. Cotidiano. Accessed 22 Nov 215
  20. Gan MA, Rao VB, Moscat MC (2005) South American monsoon indices. Atmos Sci Lett 6(4):219–223CrossRefGoogle Scholar
  21. Globo (2004) Em Minas, 14 mortes. Bom dia Brasil. Accessed 22 Nov 2015
  22. Globo (2006) Moradores do leste de MG sofrem com estragos causados pelas fortes chuvas. Bom dia Brasil. Accessed 22 Nov 2015
  23. Globo (2008) Dramas do verão chuvoso. Bom dia Brasil. Accessed 22 Nov 2015
  24. Globo (2009) Chuva não dá trégua para interior de Minas Gerais. Bom dia Brasil. Accessed 22 Nov 2015
  25. Globo (2010) Bombeiros retomam buscas por desaparecida após enchente, em MG. Minas Gerais. Accessed 22 Nov 2015
  26. Globo (2013) Defesa Civil contabiliza 23 mortes em decorrência da chuva no ES. Espírito Santo. Accessed 22 Nov 2015
  27. Güneralp B, Güneralp İ, Liu Y (2015) Changing global patterns of urban exposure to flood and drought hazards. Glob Environ Change 31:217–225. doi: 10.1016/j.gloenvcha.2015.01.002 CrossRefGoogle Scholar
  28. Jones C, Carvalho LM (2001) Active and break phases in the South American monsoon system. J Clim 15:905–914CrossRefGoogle Scholar
  29. Kalnay EM, Kanamitsu R, Kistler W, Collins D, Deaven L, Gandin M, Iredell S, Saha G, White J, Woollen Y, Zhu M, Chelliah W, Ebisuzaki W, Higgins J, Janowiak KC, Mo C, Ropelewski J, Wang A, Leetmaa R, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77(3):437–471CrossRefGoogle Scholar
  30. Kousky VE (1988) Pentad outgoing longwave radiation climatology for the South American sector. Rev Bras Meteorol 3(1):217–231Google Scholar
  31. Kousky VE, Gan MA (1981) Upper tropospheric cyclonic vortices in the tropical South Atlantic. Tellus 33:538–551. doi: 10.1111/j.2153-3490.1981.tb01780.x CrossRefGoogle Scholar
  32. Lejeune Q, Davin EL, Guillod BP, Seneviratne SI (2015) Influence of Amazonian deforestation on the future evolution of regional surface fluxes, circulation, surface temperature and precipitation. Clim Dyn 44(9–10):2769–2786. doi: 10.1007/s00382-014-2203-8 CrossRefGoogle Scholar
  33. Lenters JD, Cook KH (1997) On the origin of the Bolivian high and related circulation features of the South American climate. J Atmos Sci 54(5):656–678. doi: 10.1175/1520-0469(1997)054<0656:OTOOTB>2.0.CO;2 CrossRefGoogle Scholar
  34. Lima KC, Satyamurty P, Fernández JPR (2010) Large-scale atmospheric conditions associated with heavy rainfall episodes in Southeast Brazil. Theor Appl Climatol 101(1–2):121–135. doi: 10.1007/s00704-009-0207-9 CrossRefGoogle Scholar
  35. Mendonça RWB, Bonatti JP (2008) Estudo da energética modal para episódios de ZCAS. Parte I: análise observacional. Rev Bras Meteorol 23(4):360–380. doi: 10.1590/S0102-77862008000400001 CrossRefGoogle Scholar
  36. Milly PCD, Wetherald RT, Dunne KA, Delworth TL (2002) Increasing risk of great floods in a changing climate. Nature 415(6871):514–517. doi: 10.1038/415514a CrossRefGoogle Scholar
  37. Minuzzi RB, Sediyama GC, Barbosa EDM, Melo Júnior JCFD (2007) Climatologia do comportamento do período chuvoso da região sudeste do Brasil. Rev Bras Meteorol 22(3):338–344Google Scholar
  38. Murphy SJ, Washington R, Downing TE, Martin RV, Ziervogel G, Preston A, Todd M, Butterfield R, Briden J (2001) Seasonal forecasting for climate hazards: prospects and responses. Nat Hazards 23(2–3):171–196. doi: 10.1023/A:1011160904414 CrossRefGoogle Scholar
  39. Neto OBS, Escobar G, Silva P (2010) Método objetivo para identificar episódios de Zonas de Convergência de Umidade (ZCOU) no ambiente operacional do Centro de Previsão de Tempo e Estados Climáticos-CPTEC. In: Congresso Brasileiro De Meteorologia, vol 16, Belém do Pará, BrazilGoogle Scholar
  40. Nicolini M, Saulo C, Ulke G, Marengo J, Douglas M, Paegle J, Zipser E (2004) South American low-level jet diurnal cycle and three-dimensional structure. CLIVAR Exchanges, vol 9, no 1, International CLIVAR Project Office, pp 6–9Google Scholar
  41. ONS (Operador Nacional do Sistema Elétrico) (2013) Dados relevantes. Accessed 05 July 2015
  42. Prohaska F (1976) Climates of Central and South America. In: Schwerdtfeger W (ed) World survey of climatology. Elsevier, Amsterdam, pp 13–72Google Scholar
  43. Quadro MFL (1999) Estudo de episódios de zonas de convergência do Atlântico Sul (ZCAS) sobre a América do Sul. Rev Bras Geofís (Print Version) 17:210, 199Google Scholar
  44. Saraiva GSZ, dos Santos EV, Coelho JOM, Egas HM, Casagrande L (2015) A Atuação da ZCAS no Desastre de Dezembro de 2013 no Sudeste do Brasil. In: Workshop ZCAS/Monção. July 2015. CPTEC/INPE—Cachoeira Paulista, São Paulo, Brazil. Accessed July 2015
  45. Seluchi ME, Chou SC (2009) Synoptic patterns associated with landslide events in the Serra do Mar. Braz Theor Appl Climatol 98(1):67–77. doi: 10.1007/s00704-008-0101-x CrossRefGoogle Scholar
  46. Siegel FR (2014) Shelter: proactive planning to protect citizens from natural hazards. In: Countering 21st century social-environmental threats to growing global populations. Springer, pp 53–67. doi: 10.1007/978-3-319-09686-5_4
  47. Silva AE, Carvalho LMV (2007) Large-scale index for South America Monsoon (LISAM). Atmos Sci Lett 8(2):51–57. doi: 10.1002/asl.150 CrossRefGoogle Scholar
  48. Silva Dias PL, Schubert WH, DeMaria M (1983) Large-scale response of the tropical atmosphere to transient convection. J Atmos Sci 40(11):2689–2707CrossRefGoogle Scholar
  49. Singh O, Kumar M (2013) Flood events, fatalities and damages in India from 1978 to 2006. Nat Hazards 69(3):1815–1834. doi: 10.1007/s11069-013-0781-0 CrossRefGoogle Scholar
  50. Spokane AR, Mori Y, Martinez F (2013) Housing arrays following disasters social vulnerability considerations in designing transitional communities. Environ Behav 45(7):887–911. doi: 10.1177/0013916512447799 CrossRefGoogle Scholar
  51. Stensrud DJ (1996) Importance of low-level jet to climate: a review. J Clim 9(8):1689–1711CrossRefGoogle Scholar
  52. van der Ent RJ, Savenije HHG, Schaefli B, Steele-Dunne SC (2010) Origin and fate of atmospheric moisture over continents. Water Resour Res. doi: 10.1029/2010WR009127 Google Scholar
  53. Vera C, Higgins W, Amador J, Ambrizzi T, Garreaud R, Gochis D, Gutzler D, Lettenmaier D, Marengo J, Mechoso CR, Nogues Peagle J, Silva Dias PL, Zhang C (2006a) Toward a unified view of the American monsoon systems. J Clim 19(20):4977–5000CrossRefGoogle Scholar
  54. Vera C, Baez J, Douglas M, Emmanuel CB, Marengo J, Meitin J, Nicolini M, Nogues-Paegle J, Paegle J, Penalba O, Salio P, Saulo C, Silva Dias MA, Silva Dias P, Zipser E (2006b) The South American low-level jet experiment. Bull Am Meteorol Soc 87:63–77CrossRefGoogle Scholar
  55. World Meteorological Organization (2012) WMO statement of the status of the global climate in 2011. No. 1085. Switzerland. ISBN 978-92-63-11085-5. Accessed 27 Apr 2016
  56. Xie P, Chen M, Shi W (2010) CPC unified gauge-based analysis of global daily precipitation. In: Preprints, 24th conference on hydrology, Atlanta, GA, Am. Meteorol Soc, vol 2Google Scholar
  57. Zilli MT, Carvalho LV (2013) Frequency analysis of extreme events based on precipitation station data over southeastern Brazil. In: AGU fall meeting abstracts, vol 1, p 1361Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • David Marcolino Nielsen
    • 1
  • Marcio Cataldi
    • 1
  • André Luiz Belém
    • 1
  • Ana Luiza Spadano Albuquerque
    • 2
  1. 1.Departamento de Engenharia Agrícola e do Meio AmbienteUniversidade Federal FluminenseNiteróiBrazil
  2. 2.Departamento de GeoquímicaUniversidade Federal FluminenseNiteróiBrazil

Personalised recommendations