Skip to main content

Advertisement

Log in

Organic and elemental carbon variation in PM2.5 over megacity Delhi and Bhubaneswar, a semi-urban coastal site in India

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

This paper presents the effect of meteorology, long-range transport, boundary layer and anthropogenic activities on the chemical composition of aerosol (PM2.5) particularly carbonaceous aerosol (OC, EC TC) in two Indian cities, namely Delhi and Bhubaneswar. The climatological and demographical differences in the two cities have compelled the authors to compare concentrations of atmospheric organic carbon (OC) and elemental carbon (EC) in PM2.5 at Delhi and Bhubaneswar during winter 2013 (Dec 2012 to Feb 2013). Although, Delhi is a densely populated megacity with several anthropogenic activities, Bhubaneswar is a comparatively less dense small coastal city. The percentage contribution of total carbon (TC) to PM2.5 mass was higher as recorded at Bhubaneswar (~30.38 %) as compared to Delhi (~15 %). Average ratios of OCtot/EC, K+/OCtot and K+/EC were recorded as 1.88 ± 0.24, 0.006 ± 0.004 and 0.018 ± 0.013 at Bhubaneswar, respectively, whereas in Delhi, respective average ratios of OCtot/EC, K+/OCtot and K+/EC were recorded as 1.37 ± 0.16, 0.230 ± 0.066 and 0.321 ± 0.122. OCtot/EC, K+/OCtot, K+/EC ratios and eight carbon fraction analysis of PM2.5 mass revealed the dominant contribution of fossil fuel specifically from coal combustion at Bhubaneswar, whereas vehicular exhaust, fossil fuel combustion along with biomass burning and road dust were the main sources of emission at Delhi. Long-range transport and prevailing meteorology had a major impact on the respective pollutants at Bhubaneswar, and OCtot and EC of PM2.5 mass over Delhi were believed to have originated from local sources due to shallow boundary layer, stable meteorology and high anthropogenic activities during the observation period. Besides, secondary organic carbon (OCsec) contributed 15.76 ± 8.41 and 14.65 ± 7.46 % to OCtot concentration of Bhubaneswar and Delhi, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andreae MO (1983) Soot carbon and excess fine potassium: long-range transport of combustion-derived aerosols. Science 220:1148–1151

    Article  Google Scholar 

  • Andreae MO, Merlet P (2001) Emission of trace gases and aerosols from biomass burning. Global Biogeochem Cycles 15:955–966. doi:10.1029/2000GB001382

    Article  Google Scholar 

  • Aryal RK, Lee BK, Karki R, Gurung A, Kandasamy J, Pathak BK, Sharma S, Giri N (2008) Seasonal PM10 dynamics in Kathmandu Valley. Atmos Environ 42:8623–8633

    Article  Google Scholar 

  • Bond TC, Bhardwaj E, Dong R, Jogani R, Jung S, Roden C, Streets DG, Fernandes S, Trautmann N (2007) Historical emissions of black and organic carbon aerosol from energy-related combustion. Glob Biogeochem Cyc 21:1850–2000. doi:10.1029/2006GB002840

    Article  Google Scholar 

  • Bond TC, Doherty SJ, Fahey DW et al (2013) Bounding the role of black carbon in the climate system: a scientific assessment. J Geophys Res Atmos 118:5380–5552. doi:10.1002/jgrd.50171

    Article  Google Scholar 

  • Cabada JC, Pandis SN, Subramanian R et al (2004) Estimating the secondary organic aerosol contribution to PM2.5 using the EC tracer method special issue of aerosol science and technology on findings from the fine particulate matter supersites program. Aerosol Sci Technol 38:140–155. doi:10.1080/02786820390229084

    Article  Google Scholar 

  • Canonaco F, Crippa M, Slowik JG et al (2013) SoFi, an IGOR-based interface for the efficient use of the generalized multilinear engine (ME-2) for the source apportionment: ME-2 application to aerosol mass spectrometer data. Atmos Meas Tech 6:3649–3661. doi:10.5194/amt-6-3649-2013

    Article  Google Scholar 

  • Cao J, Lee S, Ho K et al (2004) Spatial and seasonal variations of atmospheric organic carbon and elemental carbon in Pearl River Delta Region, China. Atmos Environ 38:4447–4456. doi:10.1016/j.atmosenv.2004.05.016

    Article  Google Scholar 

  • Cao JJ, Wu F, Chow JC et al (2005) Characterization and source apportionment of atmospheric organic and elemental carbon during fall and winter of 2003 in Xi’an, China. Atmos Chem Phys 5:3127–3137. doi:10.5194/acp-5-3127-2005

    Article  Google Scholar 

  • Castro LM, Pio CA, Harrison RM, Smith DJT (1999) Carbonaceous aerosol in urban and rural European atmospheres: estimation of secondary organic carbon concentrations. Atmos Environ 33:2771–2781. doi:10.1016/S1352-2310(98)00331-8

    Article  Google Scholar 

  • Chen L-WA, Chow JC, Watson JG et al (2004) Modeling reflectance and transmittance of quartz-fiber filter samples containing elemental carbon particles: implications for thermal/optical analysis. J Aerosol Sci 35:765–780. doi:10.1016/j.jaerosci.2003.12.005

    Article  Google Scholar 

  • Chow JC, Watson JG, Zhiqiang L, Lowenthal DH, Frazier CA, Solomon PA, Thuillier RH, Magliano K (1996) Descriptive analysis of PM2.5 and PM10 at regionally representative locations during SJVAQS/AUSPEX. Atmos Environ 30:2079–2112

    Article  Google Scholar 

  • Chow JC, Watson JG, Chen LA et al (2004) Equivalence of elemental carbon by thermal/optical reflectance and transmittance with different temperature protocols. J Environ Sci Technol 38:4414–4422

    Article  Google Scholar 

  • Das N, Das R, Das SN et al (2011) Comparative studies of chemical composition of particulate matter between sea and remote location of eastern part of India. Atmos Res 99:337–343. doi:10.1016/j.atmosres.2010.11.001

    Article  Google Scholar 

  • Diehl T, Heil A, Chin M et al (2012) Anthropogenic, biomass burning, and volcanic emissions of black carbon, organic carbon, and SO2 from 1980 to 2010 for hindcast model experiments. Atmos Chem Phys Discuss 12:24895–24954. doi:10.5194/acpd-12-24895-2012

    Article  Google Scholar 

  • Draxler RR, Rolph GD (2012) HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY Website (http://ready.arl.noaa.gov/HYSPLIT.php). NOAA Air Resources Laboratory, Silver Spring, MD

  • Echalar F, Gaudichet A (1995) Aerosol emissions by tropical forest and savanna biomass burning: characteristic trace elements and fluxes. Geophys Res Lett 22:3039–3042

    Article  Google Scholar 

  • Granier C, Bessagnet B, Bond T et al (2011) Evolution of anthropogenic and biomass burning emissions of air pollutants at global and regional scales during the 1980–2010 period. Clim Change 109:163–190. doi:10.1007/s10584-011-0154-1

    Article  Google Scholar 

  • Gu J, Zhipeng B, Aixia L, Yiyang X, Weifang L, Haiyan D, Xuan Z (2010) Characterization of atmospheric organic carbon and elemental carbon of PM2.5 and PM10 at Tianjin, China. Aerosol Air Qual Res 10:167–176

    Google Scholar 

  • Harrison RM, Yin J (2000) Particulate matter in the atmosphere: which particle properties are important for its effects on health? Sci Total Environ 249:85–101

    Article  Google Scholar 

  • Jones GS, Jones A, Roberts DL et al (2005) Sensitivity of global-scale climate change attribution results to inclusion of fossil fuel black carbon aerosol. Lett, Geophys Res. doi:10.1029/2005GL023370

    Google Scholar 

  • Khare P, Baruah BP (2010) Elemental characterization and source identification of PM2.5 using multivariate analysis at the suburban site of north-east India. Atmos Res 98:148–162

    Article  Google Scholar 

  • Kulshrestha U, Kumar B (2014) Airmass trajectories and long range transport of pollutants: review of wet deposition scenario in South Asia. Adv Meteorol 2014:1–14. doi:10.1155/2014/596041

    Article  Google Scholar 

  • Kumar M, Mallik C, Kumar A, Mahanti NC, Shekh AM (2010) Evaluation of the boundary layer depth in semi-arid region of India. Dyn Atmos Ocean 49:96–107

    Article  Google Scholar 

  • Lawrence MG, Lelieveld J (2010) Atmospheric pollutant outflow from southern Asia: a review. Atmos Chem Phys 10:11017–11096. doi:10.5194/acp-10-11017-2010

    Article  Google Scholar 

  • Li H, Feng J, Sheng G et al (2008) The PCDD/F and PBDD/F pollution in the ambient atmosphere of Shanghai, China. Chemosphere 70:576–583. doi:10.1016/j.chemosphere.2007.07.001

    Article  Google Scholar 

  • Lin P, Hu M, Deng ZJ et al (2009) Seasonal and diurnal variations of organic carbon in PM2.5 in Beijing and the estimation of secondary organic carbon. J Geophys Res. doi:10.1029/2008JD010902

    Google Scholar 

  • Mahapatra PS, Panda S, Das N et al (2014a) Variation in black carbon mass concentration over an urban site in the eastern coastal plains of the Indian sub-continent. Theor Appl Climatol 117:133–147. doi:10.1007/s00704-013-0984-z

    Article  Google Scholar 

  • Mahapatra PS, Panda S, Walvekar PP et al (2014b) Seasonal trends, meteorological impacts, and associated health risks with atmospheric concentrations of gaseous pollutants at an Indian coastal city. Environ Sci Pollut Res 21:11418–11432. doi:10.1007/s11356-014-3078-2

    Article  Google Scholar 

  • Mandal P, Saud T, Sarkar R et al (2014) High seasonal variation of atmospheric C and particulate concentrations in Delhi. Environ Chem Lett, India. doi:10.1007/s10311-013-0438-y

    Google Scholar 

  • Na K, Sawant AA, Song C, Cocker DR (2004) Primary and secondary carbonaceous species in the atmosphere of Western Riverside County, California. Atmos Environ 38:1345–1355. doi:10.1016/j.atmosenv.2003.11.023

    Article  Google Scholar 

  • Nirmalkar J, Deshmukh DK, Deb MK, Tsai YI, Sopajaree K (2015) Mass loading and episodic variation of molecular markers in PM2.5 aerosols over a rural area in eastern central India. Atmos Environ 117:41–50

    Article  Google Scholar 

  • Norman M, Das SN et al (2001) Influence of air mass trajectories on the chemical composition of precipitation in India. Atmos Environ 35:4223–4235. doi:10.1016/S1352-2310(01)00251-5

    Article  Google Scholar 

  • Pachauri T, Singla V, Satsangi A et al (2013) Characterization of carbonaceous aerosols with special reference to episodic events at Agra, India. Atmos Res 128:98–110. doi:10.1016/j.atmosres.2013.03.010

    Article  Google Scholar 

  • Pant P, Shukla A, Kohl SD, Chow JC, Watson JG, Harrison RM (2015) Characterization of ambient PM2.5 at a pollution hotspot in New Delhi, India and inference of sources. Atmos Environ 109:178–189

    Article  Google Scholar 

  • Perrino C, Tiwari S, Catrambone M, Torre SD, Ranticia E, Canepari S (2011) Chemical characterization of atmospheric PM in Delhi, India, during different periods of the year including Diwali festival. Atmos Pollut Res 2:418–427

    Article  Google Scholar 

  • Ram K, Sarin MM (2010) Spatio-temporal variability in atmospheric abundances of EC, OC and WOCSEC over Northern India. J Aerosol Sci 41:88–98. doi:10.1016/j.jaerosci.2009.11.004

    Article  Google Scholar 

  • Ram K, Sarin MM, Hegde P (2008) Atmospheric abundances of primary and secondary carbonaceous species at two high-altitude sites in India: sources and temporal variability. Atmos Environ 42(28):6785–6796

    Article  Google Scholar 

  • Ram K, Sarin MM, Sudheer AK, Rengarajan R (2012) Carbonaceous and secondary aerosols during wintertime fog and haze over urban sites in the Indo Gangetic Plain. Aeros Air Qual Res 12:359–370

  • Ramanathan V, Crutzen PJ, Mitra AP, Sikka D (2002) The Indian Ocean experiment and the Asian brown cloud. Curr Sci 83:947–955

    Google Scholar 

  • Rastogi N, Sarin MM (2009) Quantitative chemical composition and characteristics of aerosols over western India: one-year record of temporal variability. Atmos Environ 43:3481–3488. doi:10.1016/j.atmosenv.2009.04.030

    Article  Google Scholar 

  • Rehman IH, Ahmed T, Praveen PS et al (2011) Black carbon emissions from biomass and fossil fuels in rural India. Atmos Chem Phys 11:7289–7299. doi:10.5194/acp-11-7289-2011

    Article  Google Scholar 

  • Rengarajan R, Sarin MM, Sudheer AK (2007) Carbonaceous and inorganic species in atmospheric aerosols during wintertime over urban and high-altitude sites in North India. J Geophys Res 112:D21307. doi:10.1029/2006JD008150

    Article  Google Scholar 

  • Rengarajan R, Sudheer AK, Sarin MM (2011) Wintertime PM2.5 and PM10 carbonaceous and inorganic constituents from urban site in western India. Atmos Res 102:420–431

    Article  Google Scholar 

  • Saarikoski S, Timonen H, Saarnio K et al (2008) Sources of organic carbon in fine particulate matter in northern European urban air. Atmos Chem Phys 8:6281–6295. doi:10.5194/acp-8-6281-2008

    Article  Google Scholar 

  • Safai PD, Raju MP, Rao PSP, Pandithurai G (2014) Characterization of carbonaceous aerosols over the urban tropical location and a new approach to evaluate their climatic importance. Atmos Environ 92:493–500. doi:10.1016/j.atmosenv.2014.04.055

    Article  Google Scholar 

  • Satsangi A, Pachauri T, Singla V et al (2012) Organic and elemental carbon aerosols at a suburban site. Atmos Res 113:13–21. doi:10.1016/j.atmosres.2012.04.012

    Article  Google Scholar 

  • Satsangi PG, Yadav S, Pipal AS, Kumbhar N (2014) Characteristics of trace metals in fine (PM2.5) and inhalable (PM10) particles and its health risk assessment along with in silico approach in indoor environment of India. Atmos Environ 92:384–393. doi:10.1016/j.atmosenv.2014.04.047

    Article  Google Scholar 

  • Saud T, Gautam R, Mandal TK et al (2012) Emission estimates of organic and elemental carbon from household biomass fuel used over the Indo-Gangetic Plain (IGP), India. Atmos Environ 61:212–220. doi:10.1016/j.atmosenv.2012.07.030

    Article  Google Scholar 

  • Saud T, Saxena M, Singh DP, Saraswati Dahiya M, Sharma SK, Datta A, Gadi R, Mandal, TK (2013) Spatial variation of chemical constituents from the burning of commonly used biomass fuels in rural areas of the Indo–Gangetic Plain (IGP), India. Atmos Environ 71:158–169

  • Seinfeld JH, Pandis SN (2006) Atmospheric chemistry and physics: from air pollution to climate change. Wiley, London

    Google Scholar 

  • Sen A, Mandal TK, Sharma SK et al (2014) Chemical properties of emission from biomass fuels used in the rural sector of the western region of India. Atmos Environ 99:411–424. doi:10.1016/j.atmosenv.2014.09.012

    Article  Google Scholar 

  • Sharma SK, Mandal TK, Saxena M, R Rohtash, Sharma A, Gautam R (2013) Source apportionment of PM10 by using positive matrix factorization at an urban site of Delhi, India. Urban Clim. doi:10.1016/j.uclim.2013.11.002

  • Sharma SK, Mandal TK, Saxena M et al (2014a) Source apportionment of PM10 by using positive matrix factorization at an urban site of Delhi, India. Urban Clim 10:656–670. doi:10.1016/j.uclim.2013.11.002

    Article  Google Scholar 

  • Sharma SK, Mandal TK, Saxena M et al (2014b) Variation of OC, EC, WSIC and trace metals of PM10 over Delhi. J Atmos Sol Terr Phys 113:10–22

    Article  Google Scholar 

  • Sjogren S, Gysel M, Weingartner E et al (2007) Hygroscopic growth and water uptake kinetics of two-phase aerosol particles consisting of ammonium sulfate, adipic and humic acid mixtures. J Aerosol Sci 38:157–171. doi:10.1016/j.jaerosci.2006.11.005

    Article  Google Scholar 

  • Srivastava AK, Bisht DS, Ram K, Tiwari S, Srivastava MK (2014) Characterization of carbonaceous aerosols over Delhi in Ganga basin: seasonal variability and possible sources. Environ Sci Pollut Res 21:8610–8619

    Article  Google Scholar 

  • Tai PK, Mickley LJ, Jacob DJ et al (2012) Meteorological modes of variability for fine particulate matter (PM2.5) air quality in the United States: implications for PM2.5 sensitivity to climate change. Atmos Chem Phys 12:3131–3145. doi:10.5194/acp-12-3131-2012

    Article  Google Scholar 

  • Tiwari S, Srivastava AK, Bisht DS, Safai PD, Parmita P (2013) Assessment of carbonaceous aerosol over Delhi in the Indo-Gangetic Basin: characterization, sources and temporal variability. Nat Hazards 65:1745–1764

    Article  Google Scholar 

  • Turpin BJ, Lim H-J (2001) Species contributions to PM2.5 mass concentrations: revisiting common assumptions for estimating organic mass. Aerosol Sci Technol 35:602–610. doi:10.1080/02786820119445

    Article  Google Scholar 

  • Venkataraman C, Reddy CK, Josson S, Reddy MS (2002) Aerosol Size and Chemical Characteristics at Mumbai, India, during the INDOEX-IFP (1999). Atmos Environ 36:1979–1991

  • Venkataraman C, Habib G, Kadamba D et al (2006) Emissions from open biomass burning in India: integrating the inventory approach with high-resolution Moderate Resolution Imaging Spectroradiometer (MODIS) active-fire and land cover data. Global Biogeochem Cycles. doi:10.1029/2005GB002547

    Google Scholar 

  • Winquist A, Schauer JJ, Turner JR, Klein M, Sarnat SE (2015) Impact of ambient fine particulate matter carbon measurement methods on observed associations with acute cardiorespiratory morbidity. J Eposure Sci Environ Epidemiol 25:215–221

    Article  Google Scholar 

  • Xu Y, Bahadur R, Zhao C, RubyLeung L (2013) Estimating the radiative forcing of carbonaceous aerosols over California based on satellite and ground observations. J Geophys Res Atmos 118:11–148. doi:10.1002/jgrd.50835

    Google Scholar 

  • Yang HS, Yu J (2002) Uncertainties in Charring Correction in the Analysis of Elemental and Organic Carbon in Atmospheric Particles by Thermal/Optical Methods. Environ Sci Technol 36:5199–5124

  • Zhou B, Shen H, Huang Y, Li W, Chen H, Zhang Y, Su S, Chen Y, Lin N, Zhuo S, Zhong Q, Liu J, Li B, Tao S (2015) Daily variations of size-segregated ambient particulate matter in Beijing. Environ Pollut 197:36–42

    Article  Google Scholar 

  • Zhu C, Cao J, Tsai C et al (2010) The indoor and outdoor carbonaceous pollution during winter and summer in rural areas of Shaanxi. Aerosol Air Qual Res, China. doi:10.4209/aaqr.2010.04

    Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Director, Institute of Minerals and Materials Technology (CSIR-IMMT), and the Head, Environment and Sustainability Department (CSIR-IMMT), for their encouragement. Authors (S.K.S., T.K.M.) are grateful to Director, CSIR-National Physical Laboratory (CSIR-NPL), for allowing to carry out this work. Financial support by ISRO-GBP (ARFI) is gratefully acknowledged. All authors acknowledge the Council of Scientific and Industrial Research (CSIR), New Delhi, for financial support under Network Project (PSC: 0112). Authors (S.R. and T.D.) acknowledge DeitY for financial support. The authors acknowledge the NOAA Air Resources Laboratory (ARL) and NASA FIRMS for the provision of the HYSPLIT model and MODIS fire events used in this publication. Authors are also thankful to Dr. Larry D. Oolman of University of Wyoming for providing upper air data of the locations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trupti Das.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panda, S., Sharma, S.K., Mahapatra, P.S. et al. Organic and elemental carbon variation in PM2.5 over megacity Delhi and Bhubaneswar, a semi-urban coastal site in India. Nat Hazards 80, 1709–1728 (2016). https://doi.org/10.1007/s11069-015-2049-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-015-2049-3

Keywords

Navigation