Skip to main content

Advertisement

Log in

Comparing landslide susceptibility models in the Río El Estado watershed on the SW flank of Pico de Orizaba volcano, Mexico

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

A comprehensive study of landslide susceptibility models is carried out in the Río El Estado watershed on the SW flank of Pico de Orizaba volcano. A detailed multitemporal landslide inventory map in the watershed is used as a framework for the quantitative comparison of three landslide susceptibility models. The first landslide susceptibility map is created by using the Stability Index MAPping model. The second and the third landslide susceptibility maps are created using multiple logistic regression (MLR) and multicriteria evaluation models. The validation of the resulting susceptibility maps is performed by comparing them with an inventory map in a contingency table and through the area under the receiver operating characteristic curve. The results point out that the models tend to over-predict and have a moderate to high match with the landslide areas. In this research, MLR is preferred over the other two models because MLR obtains similar or better results with fewer significant variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anbalagan R, Bhawani S (1996) Landslide hazard and risk assessment mapping of mountainous terrains—a case study from Kumaun Himalaya, India. Eng Geol 43:237–246

    Article  Google Scholar 

  • Aceves-Quesada F, López-Blanco J, Martin del Pozzo AL (2006) Determinación de peligros volcánicos aplicando técnicas de evaluación multicriterio y SIG en el área del Nevado de Toluca, centro de México. Revista mexicana de ciencias geológicas 23(2):113–124

    Google Scholar 

  • Aceves-Quesada F, Legorreta Paulín G, Alvarez-Ruíz Y (2013) Gravitational processes in the eastern flank of the Nevado de Toluca México. Zeitschrift für Geomorphologie 58(2):185–200

    Article  Google Scholar 

  • Ayalew L, Yamagishi H (2005) The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphol 65:15–31

  • Beven KJ, Kirkby MJ (1979) A physically based variable contributing area model of basin hydrology. Hydrol Sci Bull 24:43–69

    Article  Google Scholar 

  • Can T, Nefeslioglu HA, Gokceoglu C, Sonmez H, Duman TY (2005) Susceptibility assessments of shallow earth flows triggered by heavy rainfall at three catchments by logistic regression analyses. Geomorphology 72:250–271

    Article  Google Scholar 

  • Capra L, Lugo-Hubp J (2006) Fenómenos de remoción en masa en el poblado de Zapotitlán de Méndez, Puebla: relación entre litología y tipo de movimiento. Revista mexicana de ciencias geológicas 20(2):95–106

    Google Scholar 

  • Carrasco-Núñez G, Rose WI (1995) Eruption of a major Holocene pyroclastic flow at Citlaltépetl volcano (Pico de Orizaba), México, 8.5–9.0 ka. J Volcanol Geotherm Res 69(3/4):197–215

    Article  Google Scholar 

  • Carrasco-Núñez G, Díaz-Castellón R, Siebert L, Hubbard B, Sheridan MF, Rodríguez SR (2006) Multiple edifice-collapse events in the Eastern Mexican Volcanic Belt: the role of sloping substrate and implications for hazard assessment. J Volcanol Geotherm Res 158:151–176

    Article  Google Scholar 

  • Castellanos Abella EA, Van Westen CJ (2008) Qualitative landslide susceptibility assessment by multicriteria analysis: a case study from San Antonio del sur, Guantanamo, Cuba. Geomorphology 94:453–466

    Article  Google Scholar 

  • Centro Nacional de Prevención de Desastres (CENAPRED) (2004) Guía básica para la elaboración de mapas estatales y municipales de peligros de riesgos. Centro Nacional de Prevención de Desastres. Secretaría de Gobernación, México

    Google Scholar 

  • Compton RR (1985) Geology in the field. Wiley, New York

    Google Scholar 

  • Dai FC, Lee CF, Ngai YY (2002) Landslide risk assessment and management: an overview. Eng Geol 64:65–87

    Article  Google Scholar 

  • Dragičević S, Lai T, Balram S (2015) GIS-based multicriteria evaluation with multiscale analysis to characterize urban landslide susceptibility in data-scarce environments. Habitat Int 45:114–125

    Article  Google Scholar 

  • Fawcett T (2006) An introduction to ROC analysis. Pattern Recognit Lett 27:861–874

    Article  Google Scholar 

  • Feizizadeh B, Shadman Roodposhti M, Jankowski P, Blaschke T (2014) A GIS-based extended fuzzy multi-criteria evaluation for landslide susceptibility mapping. Comput Geosci 73:208–221

    Article  Google Scholar 

  • García E (2004) Modificaciones al sistema de clasificación climatic de Köppen. Instituto de Geografía, UNAM. Serie Libros #6

  • García-Palomo A, Carlos-Valerio V, López-Miguel C, Galván-García A, Concha-Dimas A (2006) Landslide inventory map of Guadalupe Range, north of the Mexico Basin. Boletín de la Sociedad Geológicas Mexicana 58(2):195–204

    Google Scholar 

  • Gardiner V, Dackombe R (1983) Geomorphological field manual. George Allen & Unwin Ltd, London

    Google Scholar 

  • Günther A, Van Den Eeckhaut M, Malet JP, Reichenbach P, Hervás J (2014) Climate-physiographically differentiated Pan-European landslide susceptibility assessment using spatial multi-criteria evaluation and transnational landslide information. Geomorphology 224:69–85

    Article  Google Scholar 

  • Guzzetti F, Mondini AC, Cardinali M, Fiorucci F, Santangelo M, Chang KT (2012) Landslide inventory maps: new tools for an old problem. Earth Sci Rev 112:42–66

    Article  Google Scholar 

  • Hammond C, Hall D, Miller S, Swetik P (1992) Level I stability analysis (LISA) documentation for version 2.0. General technical report INT-285, US Department of Agriculture, Forest Service, Intermountain Research Station, Ogden

  • Hervás J, Bobrowsky P (2009) Mapping: inventories, susceptibility, hazard and risk. In: Sassa K, Canuti P (eds) Landslides—disaster risk reduction. Springer, Berlin, pp 321–349. ISBN 978-3-540-69966-8

    Chapter  Google Scholar 

  • Hubbard BE (2001) Volcanic hazard mapping using aircraft, satellite and digital topographic data: Pico de Orizaba (Citlaltépetl), México. Thesis. Department of Geology. SUNY, at Buffalo

  • Hubbard BE, Sheridan MF, Carrasco-Nunez G, Díaz-Castellon R, Rodriguez S (2007) Comparative lahar hazard mapping at Volcan Citlaltépetl, Mexico using SRTM, ASTER and DTED-1 digital topography. J Volcanol Geotherm Res 160(1):99–124

    Article  Google Scholar 

  • Kleinbaum DG, Klein M (2002) Logistic Regression: A Self-learning Text, 2nd edn. Springer, New York

  • Lee S (2005) Application of logistic regression model and its validation for landslide susceptibility mapping using GIS and remote sensing data. Int J Remote Sens 26(7):1477–1491

    Article  Google Scholar 

  • Legorreta Paulin G, Bursik M (2008) Logisnet: a tool for multimethod, multiple soil layers slope stability analysis. Comput Geosci. doi:10.1016/j.cageo.2008.04.003

    Google Scholar 

  • Legorreta Paulín G, Bursik M, Ramírez-Herrera, Contreras T, Polenz M, Lugo HJ, Paredes-Mejía LM, Arana-Salinas L (2013) Landslide inventory mapping and landslide susceptibility modeling assessment on the SW flank of Pico de Orizaba volcano, Puebla-Veracruz, Mexico. Zeitschrift für Geomorphologie 57(3):371–385

    Article  Google Scholar 

  • Legorreta Paulín G, Bursik M, Lugo HJ, Paredes-Mejía LM, Aceves-Quesada JF (2014) A GIS method for landslide inventory and susceptibility mapping in the Río El Estado watershed, Pico de Orizaba volcano, México. Nat Hazards J 71(1):229–241

    Article  Google Scholar 

  • Lugo-Hubp J (1988) Elementos de Geomorfología Aplicada (Métodos Cartográficos). Instituto de Geografía, Universidad Nacional Autónoma de México, Mexico

    Google Scholar 

  • Maceo-Giovanni A, Pasuto A, Silvano S (2000) A critical review of landslide monitoring experiences. Eng Geol 55(3):133–147

    Article  Google Scholar 

  • Macías JL (2005) Geología e historia eruptiva de algunos de los grandes volcanes activos de México. Boletín de la Sociedad Geológica Mexicana. Volumen Conmemorativo del Centenario Temas Selectos de la Geología Mexicana 57(3):379–424

    Google Scholar 

  • Morrissey MM, Wieczorek GF, Morgan BA (2001) A comparative analysis of hazard models for predicting debris flows in Madison County, Virginia. US Geological Survey Open-File Report 01-0067, 17. http://pubs.usgs.gov/of/2001/ofr-01-0067/ofr-01-0067.htmls

  • Namdi A, Shakoor A (2009) A GIS-based landslide susceptibility evaluation using bivariate and multivariate statistical analyses. Eng Geol 110:11–20

    Article  Google Scholar 

  • Ohlmacher GC, Davis JC (2003) Using multiple logistic regression and GIS technology to predict landslide hazard in northeast Kansas, USA. Eng Geol 69:331–343

    Article  Google Scholar 

  • O’Loughlin EM (1986) Prediction of surface saturation zones in natural catchments by topographic analysis. Water Resour Res 22:794–804

    Article  Google Scholar 

  • Pack RT, Tarboton DG, Goodwin CN (1998) The SINMAP approach to terrain stability mapping. In: Proceedings of the eighth congress of the international association of engineering geology, Vancouver, British Columbia, Canada. http://hydrology.neng.usu.edu/sinmap/

  • Palacio-Prieto JL (1983) Metodología para el desarrollo de trabajos geomorfológicos a escala 1:50000—Primer Congreso del Instituto de Geografía. UNAM, Mexico, pp 52–72

    Google Scholar 

  • Palacios D, Parrilla G, Zamorano JJ (1999) Paraglacial and postglacial debris flows on Little Ice Age terminal moraine: Jamapa Glacier, Pico de Orizaba (Mexico). Geomorphology 28:95–118

    Article  Google Scholar 

  • Pérez-Gutiérrez R (2007) Análisis de la vulnerabilidad por los deslizamientos en masa, caso: Tlacuitlapa, Guerrero. Boletín de la Sociedad Geológica Mexicana 59(2):171–181

    Google Scholar 

  • Regmi NR, Giardino JR, Vitek JD (2010) Assessing susceptibility to landslides: using models to understand observed changes in slopes. Geomorphology 122:35–38

    Article  Google Scholar 

  • Rodríguez S, Mora I, Murrieta J, Morales BWV (2011) Peligros geológicos más frecuentes en el estado de Veracruz. Universidad Veracruzana Xalapa, Veracruz

    Google Scholar 

  • Saito H, Nakayama D, Matsuyama H (2009) Comparison of landslide susceptibility based on a decision-tree model and actual landslide occurrence: the Akaishi Mountains, Japan. Geomorphology 109:108–121

    Article  Google Scholar 

  • Secretaría de Protección Civil (2010) Atlas de peligros geológicos e hidrometeorológicos del estado de Veracruz. Comp.: Ignacio Mora González; Wendy Morales Barrera, Sergio Rodríguez Elizarrarás. Xalapa: Secretaría de Protección Civil del estado de Veracruz: Universidad Veracruzana: UNAM. 1V

  • SEDESOL (2011) Atlas de Riesgos (o peligros) Naturales del Municipio de Nogales, Veracruz 2011. Municipio de Nogales, Veracruz, p 58

    Google Scholar 

  • Sheridan MF, Carrasco-Nuñez G, Hubbard BE, Siebe C, Rodriguez-Elizarraraz S (2001) Mapa de peligros del Volcan Citlaltépetl (Pico de Orizaba). Inst Geog, Univ Nac Autonoma Mexico, 1:250,000 scale

  • Siebe C, Komorowski JC, Sheridan MF (1992) Morphology and emplacement collapse of an unusual debris avalanche deposit at Jocotitlán Volcano, Central Mexico. Bull Volcanol 54:573–589

    Article  Google Scholar 

  • Van Den Eeckhaunt M, Poesen J, Verstraeten G, Vanacker V, Moeyersons J, Nyssen J, Van Beek LPH (2005) The effectiveness of hillshade maps and expert knowledge in mapping old deep-seated landslides. Geomorphology 67:351–363

    Article  Google Scholar 

  • Van Den Eeckhaunt M, Vanwalleghem T, Poesen J, Govers G, Verstraeten G, Vandekerckhove L (2006) Prediction of landslide susceptibility using rare events logistic regression: a case-study in the Flemish Ardennes (Belgium). Geomorphology 76:392–410

    Article  Google Scholar 

  • Van Westen CJ, Rengers N, Terlien MTJ, Soeters R (1997) Prediction of the occurrence of slope instability phenomena through GIS-based hazard zonation. Geol Rundsch 86(2):404–414

    Article  Google Scholar 

  • Wawer R, Nowocień E (2003) Application of SINMAP terrain stability model in Grodarz stream watershed. Electron J Pol Agric Univ 6(1):#03

  • Weirich F, Blesius L (2007) Comparison of satellite and air photo based landslide susceptibility maps. Geomorphology 87(4):352–364

    Article  Google Scholar 

  • Zaitchik BF, van Es HM, Sullivan PJ (2003) Modeling slope stability in Honduras: parameter sensitivity and scale of aggregation. Soil Sci Soc Am J 67:268–278

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the authorities and personnel from the Laboratorio de Mecánica de Suelos, Facultad de Ingeniería, UNAM, for their help. This research was supported by the program of Ciencia Básica SEP-CONACYT Grant No. 167495, the International Programme on Landslides (IPL, Project No. 187), and NASA Grant NNX12AQ10G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Legorreta Paulín.

Additional information

This paper is submitted in memory of our colleague and friend Solène Pouget.

Solène Pouget: Deceased.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Legorreta Paulín, G., Pouget, S., Bursik, M. et al. Comparing landslide susceptibility models in the Río El Estado watershed on the SW flank of Pico de Orizaba volcano, Mexico. Nat Hazards 80, 127–139 (2016). https://doi.org/10.1007/s11069-015-1960-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-015-1960-y

Keywords

Navigation