Skip to main content

Advertisement

Log in

Generation of a national landslide hazard and risk map for the country of Georgia

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Landslide risk assessment for large areas at a country level requires a different approach and data than what is standard practice at large scales. The main goal of this research was to design a methodology for a nationwide landslide risk assessment for Georgia taking into account the limitations in data availability and detail, which do not allow the use of physically based models or statistical methods. Given these limitations, we decided to generate a qualitative landslide risk index using spatial multicriteria evaluation (SMCE). An attempt was made to compile a national landslide inventory, using old and partly destroyed archives from the Soviet period, combined with information from annual field surveys. A web-based interface for the reporting of landslide events was developed to improve the updating of the inventory in future. Relevant factor maps were prepared for the entire country, partly based on remote sensing data. As the available landslide inventory was not sufficient to use statistical methods, the factor maps were weighted using the expert-based SMCE method, and the resulting susceptibility map was validated using the available landslide inventory. The inventory was also used to make an estimation of the spatial probability of landslide occurrence within the various susceptibility classes. The resulting map was used in combination with element-at-risk maps to calculate exposure maps and to make a tentative assessment of the expected landslide losses in a 50-year time period .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • AGSO (2001) Natural hazards and the risk they pose to South-East Queenland. AGSO-Geoscience Australia. Digital report on CD-ROM

  • Aleotti P, Chowdhury R (1999) Landslide hazard assessment: summary. Rev N Perspect Bull Eng Geol Env 58:21–44

    Article  Google Scholar 

  • Alvioli M, Guzzetti F, Rossi M (2014) Scaling properties of rainfall induced landslides predicted by a physically based model. Geomorphology 213:38–47

    Article  Google Scholar 

  • Atlas of Georgia (1964) Institute of Geography of Georgia, Tbilisi, p 269

  • Balteanu D, Chendeş V, Sima M, Enciu P (2010) A country-wide spatial assessment of landslide susceptibility in Romania. Geomorphology 124(3):102–112

    Article  Google Scholar 

  • Berti M, Genevois R, LaHusen R, Simoni A, Tecca PR (2000) Debris flow monitoring in the Acquabona watershed on the Dolomites (Italian Alps). Phys Chem Earth Part B Hydrol Oceans Atmos 25(9):707–715

    Article  Google Scholar 

  • Bonnard C, Forlati F, Scavia C (eds) (2004) Identification and mitigation of large landslide risk in Europe. Advances in risk assessment. IMIRILAND Project. A.A. Balkema Publishers, Leiden, p 317

    Google Scholar 

  • Cascini L, Bonnard Ch, Corominas J, Jibson R, Montero-Olarte J (2005) Landslide hazard and risk zoning for urban planning and development. In: Hungr O, Fell R, Couture R, Eberthardt E (eds) Landslide risk management. Taylor and Francis, Blair

    Google Scholar 

  • Castellanos Abella EA, van Westen CJ (2007) Generation of a landslide risk index map for Cuba using spatial multi-criteria evaluation. Landslides 4(4):311–325

    Article  Google Scholar 

  • Castellanos Abella EA, van Westen CJ (2008) Qualitative landslide susceptibility assessment by multi criteria analysis: a case study from San Antonio del Sur, Guantánamo, Cuba. Geomorphology 94(3–4):453–466

    Article  Google Scholar 

  • Catani F, Casagli N, Ermini L, Righini G, Menduni G (2005) Landslide hazard and risk mapping at catchment scale in the Arno River basin. Landslides 2(4):329–342

    Article  Google Scholar 

  • CENN/ITC (2014) Atlas of Natural Hazards and Risks of Georgia. http://drm.cenn.org/index.php/en/background-information/paper-atlas

  • Cepeda J, Smebye H, Vangelsten B, Nadim F, Muslim D (2010) Landslide risk in Indonesia Global Assessment Report on disaster risk reduction

  • Cepeda J, Schwendtner B, Quan Luna B, Díaz M, Molina G (2013) Landslide hazard and risk assessment in El Salvador. UNISDR global assessment Report 2013—GAR13

  • Clerici A, Perego S, Tellini C, Vescovi P (2002) A procedure for landslide susceptibility zonation by the conditional analysis method. Geomorphology 48(4):349–364. doi:10.1016/S0169-555X(02)00079-X

    Article  Google Scholar 

  • Coe JA, Godt JW, Baum RL et al (2004) Landslide susceptibility from topography in Guatemala. In: Lacerda WA, Ehrlich M, Fontura SAB et al (eds) Landslides: evaluation and stabilization, vol 1. Taylor and Francis Group, London, pp 69–78

    Google Scholar 

  • Corominas J, van Westen CJ, Frattini P, Cascini L, Malet JP, Fotopoulou S, Catani F, van den Eeckhaut M, Mavrouli O, Agliardi F, Pitilakis K, Winter MG, Pastor M, Ferlisi S, Tofani V, Hervas J, Smith JT (2014) Recommendations for the quantitative analysis of landslide risk. Open access. Bull Eng Geol Env IAEG 73(2):209–263

    Google Scholar 

  • Cruden DM, Varnes DJ (1996) Landslide types and processes. In: Turner AT, Schuster RL (eds) Landslides investigation and mitigation. Transportation Research Board Special Report No. 247. National Academy Press, Washington, DC, pp 36–75

  • Dai FC, Lee CF, Ngai YY (2002) Landslide risk assessment and management: an overview. Eng Geol 64(1):65–87

    Article  Google Scholar 

  • Delaunay J (1981) Carte de France des zones vulnèrables a des glissements, écroulements, affaissements et effrondrements de terrain. Bureau de Recherches Géologiques et Minières, 81 SGN 567 GEG (in French)

  • DesInventar (2015) Inventory system of the effects of disasters. http://online.desinventar.org/

  • Farahmand A, AghaKouchak A (2013) A satellite-based global landslide model. Nat Hazards Earth Syst Sci 13(5):1259–1267

    Article  Google Scholar 

  • Fuchs S, Heiss K, Hόbl J (2007) Towards an empirical vulnerability function for use in debris flow risk assessment. Nat Hazards Earth Syst Sci 7(5):495–506

    Article  Google Scholar 

  • Furbish DJ, Rice RM (1983) Predicting landslides related to clearcut logging, northwestern California, USA. Mt Res Dev 3(3):253–259

    Article  Google Scholar 

  • Gamkrelidze E (2003) Geological map of Georgia. Geology State Department of Georgia and the National Oil Company "Saknavtobi", Tbilisi, Georgia

  • Glade T (2003) Vulnerability assessment in landslide risk analysis. Beitrag zur Erdsystemforschung 134(2):123–146

    Google Scholar 

  • Glade T, Elverfeldt KV (2005) MultiRISK: an innovative concept to model natural risks. Conference: international conference on landslide risk management. In: Geotechnical Society. Landslide risk management, Vancouver

  • Glade T, Anderson M, Crozier MJ (eds) (2005). Landslide hazard and risk. Wiley, Chichester. doi:10.1002/9780470012659

  • Gorum T (2013) toward a better understanding earthquake triggered landslide, an analysis of the size, distribution pattern and characteristics of coseismic landslides in different tectonic and geomorphic environments. PhD thesis, University of Twente, The Netherlands, http://www.itc.nl/library/papers_2013/phd/gorum.pdf

  • Guha-Sapir D, Below R, Hoyois P (2015) EM-DAT: international disaster database. www.emdat.be (Université Catholique de Louvain – Brussels – Belgium)

  • Günther A, Eeckhaut M, Reichenbach P, Hervás J, Malet JP, Foster C, Guzzetti F (2013) New developments in harmonized landslide susceptibility mapping over Europe in the framework of the European soil thematic strategy. In: Margottini C, Canuti P, Sassa K (eds) Landslides science and practice. Springer, Heidelberg, pp 297–301

    Chapter  Google Scholar 

  • Günther A, Van Den Eeckhaut M, Malet JP, Reichenbach P, Hervás J (2014a) Climate-physiographically differentiated Pan-European landslide susceptibility assessment using spatial multi-criteria evaluation and transnational landslide information. Geomorphology 224:69–85

    Article  Google Scholar 

  • Günther A, Hervás J, Van Den Eeckhaut M, Malet JP, Reichenbach P (2014b) Synoptic pan-European landslide susceptibility assessment: The ELSUS 1000 v1 map. In: Sassa K, Canuti P, Yin Y (eds) Landslide science for a safer geoenvironment, vol 1. Springer, Switzerland, pp 117–122

    Chapter  Google Scholar 

  • Guzzetti F (2000) Landslide fatalities and the evaluation of landslide risk in Italy. Eng Geol 58(2):89–107

    Article  Google Scholar 

  • Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 31(1–4):181–216

    Article  Google Scholar 

  • Hall B, Leahy M.G (2008) Open source approaches in spatial data handling. Advances in geographic information science, vol 2. Springer, Berlin. doi:10.1007/978-3-540-74831-1

  • Hervás J, Günther A, Reichenbach P, Chacón J, Pasuto A, Malet J. P, Trigila A, Hobbs P, Maquaire O, Tagliavini F, Poyiadji E, Guerrieri L, Montanarella L (2007) Recommendations on a common approach for mapping areas at risk of landslides in Europe. In: Hervás J (ed) Guidelines for mapping areas at risk of landslides in Europe. JRC Report EUR 23093 EN. Office for Official Publications of the European Communities, Luxembourg, pp 45–49

  • Hong Y, Adler R, Huffman G (2006) Evaluation of the potential of NASA multi-satellite precipitation analysis in global landslide hazard assessment. Geophys Res Lett. doi:10.1029/2006GL028010

    Google Scholar 

  • Hong Y, Adler R, Huffman G (2007) Use of satellite remote sensing data in the mapping of global landslide susceptibility. Nat Hazards 43:245–256

    Article  Google Scholar 

  • ILWIS (2014) The integrated land and water information system. http://52north.org/communities/ilwis/ilwis-open/download

  • Jaedicke C, Eeckhaut M, Nadim F, Hervás J, Kalsnes B, Vangelsten BV, Smith JT, Tofani V, Ciurean R, Winter MG, Sverdrup-Thygeson K, Syre E, Smebye H (2013) Identification of landslide hazard and risk ‘hotspots’ in Europe. Bull EngGeol Environ 73(2):325–339. doi:10.1007/s10064-013-0541-0

  • Kirschbaum DB, Adler R, Hong Y et al (2010) A global landslide catalogue for hazard applications: method, results, and limitations. Nat Hazards 52(3):561–575

    Article  Google Scholar 

  • Lee EM, Jones DKC (eds) (2004) Landslide risk assessment. Thomas Telford, London

    Google Scholar 

  • Leone F, Aste JP, Leroi E (1996) L’évaluation de la vulnerabilité aux mouvements de terrain. Revue de géographie alpine 84(1):35–46

    Article  Google Scholar 

  • Liu C, Li W, Wu H, Lu P, Sang K, Sun W, Chen W, Hong Y, Li R (2013) Susceptibility evaluation and mapping of China’s landslides based on multi-source data. Nat Hazards 69(3):1477–1495. doi:10.1007/s11069-013-0759-y

    Article  Google Scholar 

  • Malet J, Puissant A, Mathieu A, Van Den Eeckhaut M, Fressard M (2013) Integrating spatial multi-criteria evaluation and expert knowledge for country-scale landslide susceptibility analysis: application to France. In: Margottini C, Canuti P, Sassa K (eds) Landslides science and practice, vol 1. Springer, Heidelberg, pp 303–311

    Chapter  Google Scholar 

  • Map of the peak ground acceleration (PGA) with a 10 % exceedance probability in 50 years which was generated in the national earthquake hazard assessment project (2012), Ilia State University, Institute of Earth Sciences

  • Nadim F, Kjekstad O, Peduzzi P, Herold C, Jaedicke C (2006) Global landslide and avalanche hotspots. Landslides 3(2):159–174

    Article  Google Scholar 

  • OAS (1991) Primer on natural hazard management in integrated regional development, Organization of American States, Washington DC (1991) http://www.oas.org/usde/publications/Unit/oea66e/begin.htm

  • Petley D (2012) Global patterns of loss of life from landslides. Geology 40(10):927–930

    Article  Google Scholar 

  • Pradhan B, Lee S (2010) Delineation of landslide hazard areas on Penang Island, Malaysia, by using frequency ratio, logistic regression and artificial neural network models. Environ Earth Sci 60:1037–1054

    Article  Google Scholar 

  • Radbruch-Hall DH, Colton RB, Davies WE, Lucchitta I, Skipp BA, Varnes DJ (1982), Landslide Overview Map of the Conterminous United States. Geol Surv Professional Paper 1183, U.S. Geological Survey, Washington

  • Remondo J, Bonachea J, Cendrero A (2008) Quantitative landslide risk assessment and mapping on the basis of recent occurrences. Geomorphology 94:496–507

    Article  Google Scholar 

  • Saaty TL (1996) The analytic hierarchy process. McGraw Hill, New York

    Google Scholar 

  • Saaty TL, Vargas LG (2001) Models, methods, concepts and applications of the analytichierarchy process. Kluwer, Dordrecht

    Book  Google Scholar 

  • Soeters R, van Westen CJ (1996) Slope instability recognition, analysis, and zonation. In: Turner KA, Schuster RL (eds), Landslides: investigation and mitigation, Transport Research Board Special Report, vol 247, pp 129–177

  • Thiery Y, Malet JP, Sterlacchini S, Puissant A, Maquaire O (2007) Landslide susceptibility assessment by bivariate methods at large scales: application to a complex mountainous environment. Geomorphology 92(1–2):38–59

    Article  Google Scholar 

  • Trigila A, Frattini P, Casagli N, Catani F, Crosta G, Esposito C (2013) Landslide susceptibility mapping at national scale: the Italian case study. Landslide science and practice. Springer, Berlin, pp 287–295

    Google Scholar 

  • Tsereteli E, Gaprindashvili G et al (2012) The situation of Natural Egzo-dynamic disaster and Anthropogenic stress risk in Georgia, Action for optimization of their management. Ivane Javakhishvili Tbilisi State University, Vakhushti Bagrationi Institute of Geography, Collected Papers, new series #4(83), Tbilisi, Georgia. pp 50–63

  • Tsereteli E, Gaprindashvili M et al (2013) Information bulletin “outcomes of geological disaster in 2012 and their development forecast for 2013 in Georgia. Ministry of Environment and Natural Resources Protection of Georgia, National Environmental Agency, Tbilisi, Georgia

  • Tsereteli J, Tsereteli E, Sklifosovskaya Z, Kahadze M (1978) Landslide and Mudflow cadastres of Modern Egzo-geological processes (scale 1:200,000) of Lesser Caucasus and Kakheti region mountain zone. Ministry of Geology of USSR, Georgian Geological Service, Hydro geological and Engineering-Geological expedition of Kvareli party, Tbilisi, Georgia

  • Van Den Eeckhaut M, Hervás J, Jaedicke C, Malet JP, Picarelli L (2010) Calibration of logistic regression coefficients from limited landslide inventory data for European-wide landslide susceptibility modelling. In: Malet JP, Glade T, Casagli N (eds) Proceedings of the international conference mountain risks: bringing science to society, Florence, Italy, 24–26 Nov 2010. CERG Editions, Strasbourg, pp 515–521

  • van Westen CJ, van Asch ThWJ, Soeters R (2006) Landslide hazard and risk zonation: Why is it still so difficult? Bull Eng Geol Env IAEG 65(2):167–184

    Article  Google Scholar 

  • van Westen C.J, Straatsma M.W, Turdukulov U.D, Feringa W.F, Sijmons K, Bakhtadze K, Janelidze T, Kheladze N (2012) Atlas of natural hazards and risks of Georgia: e-book. Tbilisi, Caucasus Environmental NGO Network (CENN), University of Twente Faculty of Geo-Information and Earth Observation (ITC). ISBN: 978-9941-0-4310-9

  • Vargas LG (1990) An overview of the analytic hierarchy process and its applications. Eur J Oper Res 48:2–8

    Article  Google Scholar 

  • Varnes DJ, IAEG (1984) Landslide hazard zonation: a review of principles and practice. UNESCO, Darantiere, Paris

    Google Scholar 

  • World Bank (2010) http://data.worldbank.org/country/georgia#cp_prop

  • WP/WLI (1993) A suggested method for describing the activity of a landslide. Bull Int As Eng Geol, No. 47, pp 53–57

  • Yalcin A (2008) GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): comparisons of results and confirmations. Catena 72:1–12

    Article  Google Scholar 

  • Yang W, Shen L, Shi P (2015) Mapping landslide risk of the world. In: Shi P, Kasperson R (eds) World atlas of natural disaster risk. Springer, Berlin, pp 57–66

    Google Scholar 

  • Yoshimatsu H, Abe S (2006) A review of landslide hazards in Japan and assessment of their susceptibility using an analytical hierarchic process (AHP) method. Landslides 3:149-158 (online first)

    Article  Google Scholar 

  • Ziemer RR, Lewis J, Rice RM, Lisle TE (1991) Modelling the cumulative effects of forest management strategies. J Environ Qual 20(1):36–42

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the National Environmental Agency of the Ministry of Environment and Natural Resources Protection of Georgia, CENN for providing various datasets used in this study and colleagues from the MATRA Project: Nana Janashia (CENN), Dr. M. W. (Menno) Straatsma, Dr. Ulan Turdukulov, W.F. (Wim) Feringa (ITC), Koert Sijmons (GeoMapa), Kakha Bakhtadze, Tchichiko Janelidze, Nino Kheladze, Levan Natsvlishvili (CENN) for their collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Gaprindashvili.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaprindashvili, G., Van Westen, C.J. Generation of a national landslide hazard and risk map for the country of Georgia. Nat Hazards 80, 69–101 (2016). https://doi.org/10.1007/s11069-015-1958-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-015-1958-5

Keywords

Navigation