Natural Hazards

, Volume 79, Issue 2, pp 1299–1331 | Cite as

Methodology for geohazard assessment for hydropower projects

  • Fjóla G. Sigtryggsdóttir
  • Jónas Th. Snæbjörnsson
  • Lars Grande
  • Ragnar Sigbjörnsson
Original Paper


The paper presents a comprehensive methodology for a multihazard assessment, including an associated multihazard monitoring programme. An existing method in system theory is extended for multiple systems and used to demonstrate the importance of considering geohazard interrelations in the safety monitoring of reservoirs and dams. The method is applied to systems of geohazards and monitoring parameters. In both systems, there is a reservoir retained by one or more dams. Geohazards in hydropower project perspectives as well as monitoring opportunities are classified. The results are presented in a colour-coded matrix visually mapping ranked interrelations for the two systems. The methodology proposed provides a clear view on the prospective that individual geohazards may trigger other geohazards as well as on the geohazard-triggering potential of the reservoir itself. The warning potential of the possible monitoring parameters is also mapped and interrelated to the individual geohazards. The results demonstrate the importance of a comprehensive multidisciplinary monitoring programme for reliable operation and risk management of hydropower projects.


Multihazard Geohazards Reservoir Dam Monitoring System interrelations Hazard mitigation 



Constructive comments from two anonymous reviewers improved the paper and are sincerely appreciated. The first author gratefully acknowledges the financial support from the Iceland Catastrophe Insurance and the Landsvirkjun (National Power Company of Iceland) Energy Research Fund.


  1. Abdel-Monem MS, Mohamed HH, Saleh M, Abou-Aly N (2012) Seismicity and 10-years recent crustal deformation studies at Aswan region, Egypt. Acta Geodyn Geomater 9:221–236Google Scholar
  2. Albino F, Pinel V, Sigmundsson F (2010) Influence of surface load variations on eruption likelihood: application to two Icelandic subglacial volcanoes, Grímsvötn and Katla. Geophys J Int. doi: 10.1111/j.1365-246X.2010.04603.x
  3. Alho P, Roberts M, Käyhkö J (2007) Estimating the inundation area of a massive, hypothetical jökulhlaup from northwest Vatnajökull, Iceland. Nat Hazards 41:21–42. doi: 10.1007/s11069-006-9007-z CrossRefGoogle Scholar
  4. Ataie-Ashtiani B, Yavari-Ramshe S (2011) Numerical simulation of wave generated by landslide incidents in dam reservoirs. Landslides 8:417–432. doi: 10.1007/s10346-011-0258-8 CrossRefGoogle Scholar
  5. Avila R, Moberg L (1999) A systematic approach to the migration of 137Cs in forest ecosystems using interaction matrices. J Environ Radioact 45:271–282. doi: 10.1016/S0265-931X(98)00111-8 CrossRefGoogle Scholar
  6. Barclay J, Johnstone JE, Matthews AJ (2006) Meteorological monitoring of an active volcano: implications for eruption prediction. J Volcanol Geotherm Res 150:339–358. doi: 10.1016/j.jvolgeores.2005.07.020 CrossRefGoogle Scholar
  7. Biggs J, Chivers M, Hutchinson MC (2013) Surface deformation and stress interactions during the 2007–2010 sequence of earthquake, dyke intrusion and eruption in northern Tanzania. Geophys J Int 195:16–26. doi: 10.1093/gji/ggt226 CrossRefGoogle Scholar
  8. Björnsson G (2002) Kárahnjúkavirkjun sýnd veiði en ekki gefin (in Icelandic) [WWW document].
  9. Bohannon J (2010) The Nile Delta’s sinking future. Science 327:1444–1447. doi: 10.1126/science.327.5972.1444 CrossRefGoogle Scholar
  10. Bonacci O, Roje-Bonacci T (2008) Water losses from the Ričice reservoir built in the Dinaric karst. Eng Geol 99:121–127. doi: 10.1016/j.enggeo.2007.11.014 CrossRefGoogle Scholar
  11. Bonaccorso A, Currenti G, Del Negro C (2013) Interaction of volcano-tectonic fault with magma storage, intrusion and flank instability: a thirty years study at Mt. Etna volcano. J Volcanol Geotherm Res 251:127–136. doi: 10.1016/j.jvolgeores.2012.06.002 CrossRefGoogle Scholar
  12. Bryant WA (2013) Fault. In: Bobrowsky PT (ed) Encyclopedia of natural hazards. Springer, Dordrecht, pp 317–321CrossRefGoogle Scholar
  13. Cañón-Tapia E (2014) Volcanic eruption triggers: a hierarchical classification. Earth Sci Rev 129:100–119. doi: 10.1016/j.earscirev.2013.11.011 CrossRefGoogle Scholar
  14. Carminati E, Enzi S, Camuffo D (2007) A study on the effects of seismicity on subsidence in foreland basins: an application to the Venice area. Glob Planet Change 55:237–250. doi: 10.1016/j.gloplacha.2006.03.003 CrossRefGoogle Scholar
  15. Cassidy JF (2013) Earthquake. In: Bobrowsky PT (ed) Encyclopedia of natural hazards. Springer, Dordrecht, pp 208–223CrossRefGoogle Scholar
  16. Chadha RK, Kuempel H-J, Shekar M (2008) Reservoir triggered seismicity (RTS) and well water level response in the Koyna-Warna region, India. Tectonophysics 456:94–102. doi: 10.1016/j.tecto.2006.11.010 CrossRefGoogle Scholar
  17. Chia Y, Liu C, Lee C (2011) Groundwater level changes induced by crustal deformation. AGU Fall Meet Abstracts.
  18. Chittibabu P, Rao YR (2011) Numerical simulation of storm surges in Lake Winnipeg. Nat Hazards 60:181–197. doi: 10.1007/s11069-011-0002-7 CrossRefGoogle Scholar
  19. Cole-Dai J (2010) Volcanoes and climate. Wiley Interdiscip Rev Clim Change 1:824–839. doi: 10.1002/wcc.76 CrossRefGoogle Scholar
  20. Corti T, Muccione V, Köllner-Heck P, Bresch D, Seneviratne SI (2009) Simulating past droughts and associated building damages in France. Hydrol Earth Syst Sci 13:1739–1747CrossRefGoogle Scholar
  21. Cui P, Zhu X (2011) Surge generation in reservoirs by landslides triggered by the wenchuan earthquake. J Earthq Tsunami 05:461–474. doi: 10.1142/S1793431111001194 CrossRefGoogle Scholar
  22. Cuomo G (2013) Surge. In: Bobrowsky PT (ed) Encyclopedia of natural hazards. Springer, Dordrecht, pp 987–988CrossRefGoogle Scholar
  23. Danard M, Munro A, Murty T (2003) Storm surge hazard in Canada. Nat Hazards 28:407–434. doi: 10.1023/A:1022990310410 CrossRefGoogle Scholar
  24. De Pippo T, Donadio C, Pennetta M, Petrosino C, Terlizzi F, Valente A (2008) Coastal hazard assessment and mapping in Northern Campania, Italy. Geomorphology 97:451–466. doi: 10.1016/j.geomorph.2007.08.015 CrossRefGoogle Scholar
  25. Degu AM, Hossain F, Niyogi D, Pielke R, Shepherd JM, Voisin N, Chronis T (2011) The influence of large dams on surrounding climate and precipitation patterns: dams and local climate. Geophys Res Lett. doi: 10.1029/2010GL046482
  26. Do Nascimento AF, Cowie PA, Lunn RJ, Pearce RG (2004) Spatio-temporal evolution of induced seismicity at Açu reservoir, NE Brazil: induced seismicity at Açu reservoir. Geophys J Int 158:1041–1052. doi: 10.1111/j.1365-246X.2004.02351.x CrossRefGoogle Scholar
  27. Dussaillant A, Benito G, Buytaert W, Carling P, Meier C, Espinoza F (2009) Repeated glacial-lake outburst floods in Patagonia: an increasing hazard? Nat Hazards 54:469–481. doi: 10.1007/s11069-009-9479-8 CrossRefGoogle Scholar
  28. Eggert S, Walter TR (2009) Volcanic activity before and after large tectonic earthquakes: observations and statistical significance. Tectonophysics 471:14–26. doi: 10.1016/j.tecto.2008.10.003 CrossRefGoogle Scholar
  29. Fell R, Wan CF, Cyganiewicz J, Foster M (2003) Time for development of internal erosion and piping in embankment dams. J Geotech Geoenviron Eng 129:307–314. doi: 10.1061/(ASCE)1090-0241(2003)129:4(307) CrossRefGoogle Scholar
  30. FEMA (2005) Federal guidelines for dam safety. Earthquake analyses and design of dams. FEMAGoogle Scholar
  31. FERC (2005) Chapter 14—Dam safety performance monitoring program. In: Engineering guidelines for the evaluation of hydropower project. Federal Energy Regulatory Comission (FERC), Office of Energy ProjectsGoogle Scholar
  32. FERC (2010) Chapter 9—Instrumentation and monitoring. In: Engineering guidelines for the evaluation of hydropower project. Federal Energy Regulatory Comission (FERC), Office of Energy ProjectsGoogle Scholar
  33. Ferreira JM, França GS, Vilar CS, do Nascimento AF, Bezerra FHR, Assumpção M (2008) Induced seismicity in the Castanhão reservoir, NE Brazil—preliminary results. Monit Induc Seism Obs Models Interpret 456:103–110. doi: 10.1016/j.tecto.2006.11.011
  34. Foster M, Fell R, Spannagle M (2000) The statistics of embankment dam failures and accidents. Can Geotech J 37:1000–1024. doi: 10.1139/t00-030 CrossRefGoogle Scholar
  35. Frough O, Torabi SR (2013) An application of rock engineering systems for estimating TBM downtimes. Eng Geol 157:112–123. doi: 10.1016/j.enggeo.2013.02.003 CrossRefGoogle Scholar
  36. Fujita H (1977) Influence of water level fluctuations in a reservoir on slope stability. Bull Int As Eng Geol 16:170–173. doi: 10.1007/BF02591474 CrossRefGoogle Scholar
  37. Gahalaut K, Gahalaut VK, Pandey MR (2007) A new case of reservoir triggered seismicity: Govind Ballav Pant reservoir (Rihand dam), central India. Tectonophysics 439:171–178. doi: 10.1016/j.tecto.2007.04.003 CrossRefGoogle Scholar
  38. Gatto LW (1984) Reservoir bank erosion caused by ice. Cold Reg Sci Technol 9:203–214. doi: 10.1016/0165-232X(84)90067-3 CrossRefGoogle Scholar
  39. Gatto L, Doe W III (1987) Bank conditions and erosion along selected reservoirs. Environ Geol Water Sci 9:143–154. doi: 10.1007/BF02449947 CrossRefGoogle Scholar
  40. Geirsson H, Árnadóttir Th, Hreinsdóttir S (2010) Overview of results from continuous GPS observations in Iceland from 1995 to 2010. Jökull 60:3–22Google Scholar
  41. Geirsson H, LaFemina P, Árnadóttir T, Sturkell E, Sigmundsson F, Travis M, Schmidt P, Lund B, Hreinsdóttir S, Bennett R (2012) Volcano deformation at active plate boundaries: deep magma accumulation at Hekla volcano and plate boundary deformation in south Iceland. J Geophys Res. doi: 10.1029/2012JB009400 Google Scholar
  42. Goodman RE, Powell C (2003) Investigations of blocks in foundations and abutments of concrete dams. J Geotech Geoenviron Eng 129:105–116. doi: 10.1061/(ASCE)1090-0241(2003)129:2(105) CrossRefGoogle Scholar
  43. Gráková M, Mantlík F, Schenk V, Schenková Z (2007) Data processing of GNSS observations of the geonas network—effects of extreme meteorological conditions. Acta Geodyn Geomater 4:153–161Google Scholar
  44. Gupta HK (2001) Short-term earthquake forecasting may be feasible at Koyna, India. Tectonophysics 338:353–357. doi: 10.1016/S0040-1951(01)00083-X CrossRefGoogle Scholar
  45. Gupta HK (2002) A review of recent studies of triggered earthquakes by artificial water reservoirs with special emphasis on earthquakes in Koyna, India. Earth Sci Rev 58:279–310. doi: 10.1016/S0012-8252(02)00063-6 CrossRefGoogle Scholar
  46. Gupta HK (2013) Triggered earthquakes. In: Bobrowsky PT (ed) Encyclopedia of natural hazards. Springer, Dordrecht, pp 1031–1036CrossRefGoogle Scholar
  47. Gvelesiani TL, Ostroverkh BN, Dzhindzhikhashvili GY, Eranosyan SO, Reznikova VI (1989) Predicting wave formation in mountain reservoirs during landfalls and landslides. Hydrotech Constr 23:725–730. doi: 10.1007/BF01440341 CrossRefGoogle Scholar
  48. Heinz WF (2012) Dams founded on dispersive soils and rocks drilling and grouting under difficult conditions. Am Soc Civil Eng. doi: 10.1061/9780784412350.0094 Google Scholar
  49. Hiller T, Kaufmann G, Romanov D (2011) Karstification beneath dam-sites: from conceptual models to realistic scenarios. J Hydrol 398:202–211. doi: 10.1016/j.jhydrol.2010.12.014 CrossRefGoogle Scholar
  50. Hossain F (2010) Empirical relationship between large dams and the alteration in extreme precipitation. Nat Hazards Rev 11:97–101. doi: 10.1061/(ASCE)NH.1527-6996.0000013 CrossRefGoogle Scholar
  51. Hossain F, Jeyachandran I, Pielke R (2010) Dam safety effects due to human alteration of extreme precipitation: dam safety and extreme precipitation. Water Resour Res. doi: 10.1029/2009WR007704 Google Scholar
  52. Huang Y, Jiang X (2010) Field-observed phenomena of seismic liquefaction and subsidence during the 2008 Wenchuan earthquake in China. Nat Hazards 54:839–850. doi: 10.1007/s11069-010-9509-6 CrossRefGoogle Scholar
  53. Huang Y, Zheng H, Zhuang Z (2011) Seismic liquefaction analysis of a reservoir dam foundation in the south-north water diversion project in China. Part I: liquefaction potential assessment. Nat Hazards 60:1299–1311. doi: 10.1007/s11069-011-9910-9 CrossRefGoogle Scholar
  54. Huang B, Yin Y, Liu G, Wang S, Chen X, Huo Z (2012) Analysis of waves generated by Gongjiafang landslide in Wu Gorge, three Gorges reservoir, on November 23, 2008. Landslides 9:395–405. doi: 10.1007/s10346-012-0331-y CrossRefGoogle Scholar
  55. Hudson J (1992) Rock engineering systems: theory and practice. Ellis Horwood, ChichesterGoogle Scholar
  56. ICOLD (1993) Dams and environment, Geophysical impacts (Bulletin No. 90). ICOLD-CIGB, ParisGoogle Scholar
  57. ICOLD (1995) Dam failures statistical analysis (Bulletin No. 99). ICOLD-CIGB, ParisGoogle Scholar
  58. ICOLD (1998) Neotectonics and dams (Bulletin No. 112). ICOLD-CIGB, ParisGoogle Scholar
  59. ICOLD (1999) Seismic observation of dams. Guidelines and case studies (Bulletin No. 113). ICOLD-CIGB, ParisGoogle Scholar
  60. ICOLD (2005) Dam foundations. Geologic considerations. Investigation methods. Treatment Monitoring. (Bulletin No. 129). ICOLD-CIGB, ParisGoogle Scholar
  61. ICOLD (2007) Embankment dams on permafrost. A review of the Russian experience. (Bulletin No. 133). ICOLD-CIGB, ParisGoogle Scholar
  62. ICOLD (2009a) Sedimentation and sustainable use of reservoirs and river systems (Bulletin No. 147). ICOLD-CIGB, ParisGoogle Scholar
  63. ICOLD (2009b) Surveillance: basic elements in a “Dam Safety” process (Bulletin No. 138). ICOLD-CIGB, ParisGoogle Scholar
  64. ICOLD (2011) Reservoirs and seismicity (Bulletin No. 137). ICOLD-CIGB, ParisGoogle Scholar
  65. ICOLD (2013a) Dam surveillance guide (Bulletin No. 158). ICOLD-CIGB, ParisGoogle Scholar
  66. ICOLD (2013b) Dam safety management: operational phase of the dam life cycle (Bulletin No. 154). ICOLD-CIGB, ParisGoogle Scholar
  67. Itaba S (2008) Groundwater changes associated with the 2004 Niigata-Chuetsu and 2007 Chuetsu-oki earthquakes. Earth Planets Space 60:1161–1168CrossRefGoogle Scholar
  68. Itaba S, Koizumi N, Takahashi N (2008) Crustal movement and groundwater changes associated with the episodic deep low frequency tremors and slow slip events in the southern part of Kii Peninsula, Japan. AGU Fall Meet AbstrGoogle Scholar
  69. Jaboyedoff M, Horton P, Derron M-H, Longchamp C, Michoud C (2013) Monitoring natural hazards. In: Bobrowsky PT (ed) Encyclopedia of natural hazards. Springer, Dordrecht, pp 686–696CrossRefGoogle Scholar
  70. Jakobsdóttir SS, Roberts MJ, Guđmundsson GB, Geirsson H, Slunga R (2008) Earthquake swarms at Upptyppingar, north-east Iceland: a sign of magma intrusion? Stud Geophys Geod 52:513–528. doi: 10.1007/s11200-008-0035-x CrossRefGoogle Scholar
  71. Johnson K (2008) Gypsum-karst problems in constructing dams in the USA. Environ Geol 53:945–950. doi: 10.1007/s00254-007-0720-z CrossRefGoogle Scholar
  72. Jonbjarnason B, Sigmundsson F, Ofeigsson B, Sturkell EC (2010) Crustal effects of the Hálslón water reservoir, Iceland: a three-dimensional model of the Earth’s response. In: Fall meeting, abstracts. American Geophysical UnionGoogle Scholar
  73. Kamiyama M, Sugito M, Kuse M (2012) Precursor of crustal movements before the 2011 great east japan earthquake. Presented at the proceedings of the international symposium on engineering lessons learned from the 2011 Great East Japan Earthquake, JapanGoogle Scholar
  74. Kappes M, Keiler M, Elverfeldt K, Glade T (2012) Challenges of analyzing multi-hazard risk: a review. Nat Hazards 64:1925–1958. doi: 10.1007/s11069-012-0294-2 CrossRefGoogle Scholar
  75. Kattelmann R (2003) Glacial lake outburst floods in the Nepal Himalaya: a manageable hazard? Nat Hazards 28:145–154. doi: 10.1023/A:1021130101283 CrossRefGoogle Scholar
  76. Kieffer DS, Goodman RE (2012) Assessing scour potential of unlined rock spillways with the block scour spectrum/Beurteilung der Kolkbildung in nicht ausgekleideten Hochwasserentlastungen in Fels mittels des Block Scour Spectrums. Geomech Tunn 5:527–536. doi: 10.1002/geot.201200039 CrossRefGoogle Scholar
  77. Klyuchevskii AV, Demyanovich VM, Klyuchevskaya AA (2012) The possibility of a tsunami on Lake Baikal. Dokl Earth Sci 442:130–134. doi: 10.1134/S1028334X1201014X CrossRefGoogle Scholar
  78. Komac B, Zorn M (2013) Geohazards. In: Bobrowsky PT (ed) Encyclopedia of natural hazards. Springer, Dordrecht, p 387CrossRefGoogle Scholar
  79. Kondolf GM (1997) PROFILE: hungry water: effects of dams and gravel mining on river channels. Environ Manag 21:533–551. doi: 10.1007/s002679900048 CrossRefGoogle Scholar
  80. Kvalstad T (2007) What is the current “best practice” in offshore geohazard investigations? A state-of-the-art review. The Offshore Technology Conference. doi: 10.4043/18545-MS
  81. Lacasse S, Nadim F, Lacasse S, Nadim F (2009) Landslide risk assessment and mitigation strategy. In: Sassa K, Canuti P (eds) Landslides—disaster risk reduction. Springer, Berlin, pp 31–61CrossRefGoogle Scholar
  82. Lane R (1974) Investigations of seismicity at dam/reservoir sites. Eng Geol 8:95–98. doi: 10.1016/0013-7952(74)90015-5 CrossRefGoogle Scholar
  83. Langer H, Falsaperla S, Messina A, Spampinato S, Behncke B (2011) Detecting imminent eruptive activity at Mt Etna, Italy, in 2007–2008 through pattern classification of volcanic tremor data. J Volcanol Geotherm Res 200:1–17. doi: 10.1016/j.jvolgeores.2010.11.019 CrossRefGoogle Scholar
  84. Lavallée Y, Stix J, Kennedy B, Richer M, Longpré M-A (2004) Caldera subsidence in areas of variable topographic relief: results from analogue modeling. Role Lab Exp Volcanol 129:219–236. doi: 10.1016/S0377-0273(03)00241-5 Google Scholar
  85. Li K, Zhu C, Wu L, Huang L (2013) Problems caused by the three gorges dam construction in the Yangtze River basin: a review. Environ Rev 21:127–135. doi: 10.1139/er-2012-0051 CrossRefGoogle Scholar
  86. Liu X, Wang S, Wang E (2011) A study on the uplift mechanism of Tongjiezi dam using a coupled hydro-mechanical model. Eng Geol 117:134–150. doi: 10.1016/j.enggeo.2010.10.013 CrossRefGoogle Scholar
  87. Lomnitz C (1974) Earthquakes and reservoir impounding: state of the art. Eng Geol 8:191–198. doi: 10.1016/0013-7952(74)90024-6 CrossRefGoogle Scholar
  88. Loughlin SC (2013) Volcanoes and volcanic eruptions. In: Bobrowsky PT (ed) Encyclopedia of natural hazards. Springer, Dordrecht, pp 1077–1088CrossRefGoogle Scholar
  89. Lu Y, Zuo L, Ji R, Liu H (2010) Deposition and erosion in the fluctuating backwater reach of the three gorges project after upstream reservoir adjustment. Int J Sediment Res 25:64–80. doi: 10.1016/S1001-6279(10)60028-5 CrossRefGoogle Scholar
  90. Lu D, Fitzgerald R, Stockwell W, Reddy R, White L (2013) Numerical simulation for a wind dust event in the US/Mexico border region. Air Qual Atmos Health 6:317–331. doi: 10.1007/s11869-012-0174-7 CrossRefGoogle Scholar
  91. Lunn RJ, do Nascimento AF, Cowie P (2004) Investigating the relationship between fault permeability and effective stress using constraints from reservoir induced seismicity (ris). In: Stephanson O (ed) Elsevier geo-engineering book series. Elsevier, Amsterdam, pp 617–622Google Scholar
  92. Mahmoud SM (2003) Seismicity and GPS-derived crustal deformation in Egypt. J Geodyn 35:333–352. doi: 10.1016/S0264-3707(02)00135-7 CrossRefGoogle Scholar
  93. Marker B (2013) Land subsidence. In: Bobrowsky P (ed) Encyclopedia of natural hazards, encyclopedia of earth sciences series. Springer, Berlin, pp 583–590CrossRefGoogle Scholar
  94. Martens HR, White RS (2013) Triggering of microearthquakes in Iceland by volatiles released from a dyke intrusion. Geophys J Int 194(3):1738–1754. doi: 10.1093/gji/ggt184 CrossRefGoogle Scholar
  95. Marzocchi W, Garcia-Aristizabal A, Gasparini P, Mastellone M, Di Ruocco A (2012) Basic principles of multi-risk assessment: a case study in Italy. Nat Hazards 62:551–573. doi: 10.1007/s11069-012-0092-x CrossRefGoogle Scholar
  96. Matsumoto N, Koizumi N (2013) Recent hydrological and geochemical research for earthquake prediction in Japan. Nat Hazards 69:1247–1260. doi: 10.1007/s11069-011-9980-8 CrossRefGoogle Scholar
  97. McCall GJH, Laming DJC, Scott SC (eds) (1992) Geohazards. Springer, DordrechtGoogle Scholar
  98. McCalpin JP (2013) Tectonic and tectono-seismic hazards. In: Bobrowsky PT (ed) Encyclopedia of natural hazards. Springer, Dordrecht, pp 994–1004CrossRefGoogle Scholar
  99. McGinnis LD (1963) Earthquakes and crustal movement as related to water load in the Mississippi valley region (Circular No. 344). Illinois State Geological Survey, UrbanaGoogle Scholar
  100. Meade R (1991) Reservoirs and earthquakes. Eng Geol 30:245–262. doi: 10.1016/0013-7952(91)90062-P CrossRefGoogle Scholar
  101. Mejia L, Forrest M, Bischoff J, Gillon M, Everitt S (1999) Upgrading of Matahina dam for foundation fault displacement. Am Soc Civil Eng. doi: 10.1061/40440(1999)19 Google Scholar
  102. Mekkawi M (2004) A long-lasting relaxation of seismicity at Aswan reservoir, Egypt, 1982–2001. Bull Seismol Soc Am 94:479–492. doi: 10.1785/0120030067 CrossRefGoogle Scholar
  103. Mendes-Victor LA, Oliveira CS (2013) Introduction, including overview. Nat Hazards 69:1143–1153. doi: 10.1007/s11069-013-0792-x CrossRefGoogle Scholar
  104. Muço B (2013) The atmospheric water as a triggering factor for earthquakes in the central Virginia seismic zone. Nat Hazards. doi: 10.1007/s11069-013-0902-9 Google Scholar
  105. Murton J (2013) Permafrost. In: Bobrowsky P (ed) Encyclopedia of natural hazards, encyclopedia of earth sciences series. Springer, Dordrecht, pp 759–764CrossRefGoogle Scholar
  106. Najafi-Jilani A, Ataie-Ashtiani B (2012) Laboratory investigation of wave run-up caused by landslides in dam reservoirs. Q J Eng Geol Hydrogeol 45:89–98. doi: 10.1144/1470-9236/09-035 CrossRefGoogle Scholar
  107. Nonveiller E (1987) The Vajont reservoir slope failure. Eng Geol 24:493–512. doi: 10.1016/0013-7952(87)90081-0 CrossRefGoogle Scholar
  108. Ogata Y (2011) Pre-seismic anomalies in seismicity and crustal deformation: case studies of the 2007 Noto Hanto earthquake of M6.9 and the 2007 Chuetsu-oki earthquake of M6.8 after the 2004 Chuetsu earthquake of M6.8: 2007 Noto Hanto and Chuetsu-oki earthquakes. Geophys J Int 186:331–348. doi: 10.1111/j.1365-246X.2011.05033.x CrossRefGoogle Scholar
  109. Osti R, Bhattarai TN, Miyake K (2011) Causes of catastrophic failure of Tam Pokhari moraine dam in the Mt. Everest region. Nat Hazards 58:1209–1223. doi: 10.1007/s11069-011-9723-x CrossRefGoogle Scholar
  110. Pandey AP, Chadha RK (2003) Surface loading and triggered earthquakes in the Koyna-Warna region, western India. Phys Earth Planet Inter 139:207–223. doi: 10.1016/j.pepi.2003.08.003 CrossRefGoogle Scholar
  111. Panza GF, Peresan A, Magrin A, Vaccari F, Sabadini R, Crippa B, Marotta AM, Splendore R, Barzaghi R, Borghi A, Cannizzaro L, Amodio A, Zoffoli S (2011) The SISMA prototype system: integrating geophysical modeling and earth observation for time-dependent seismic hazard assessment. Nat Hazards 69:1179–1198. doi: 10.1007/s11069-011-9981-7 CrossRefGoogle Scholar
  112. Peinke J, Matcharashvili T, Chelidze T, Gogiashvili J, Nawroth A, Lursmanashvili O, Javakhishvili Z (2006) Influence of periodic variations in water level on regional seismic activity around a large reservoir: field data and laboratory model. Phys Earth Planet Inter 156:130–142. doi: 10.1016/j.pepi.2006.02.010 CrossRefGoogle Scholar
  113. Peng M, Li XY, Li DQ, Jiang SH, Zhang LM (2013) Slope safety evaluation by integrating multi-source monitoring information. Struct Saf. doi: 10.1016/j.strusafe.2013.08.007 Google Scholar
  114. Petrakov DA, Tutubalina OV, Aleinikov AA, Chernomorets SS, Evans SG, Kidyaeva VM, Krylenko IN, Norin SV, Shakhmina MS, Seynova IB (2012) Monitoring of Bashkara Glacier lakes (Central Caucasus, Russia) and modelling of their potential outburst. Nat Hazards 61:1293–1316. doi: 10.1007/s11069-011-9983-5 CrossRefGoogle Scholar
  115. Prestininzi A, Romeo R (2000) Earthquake-induced ground failures in Italy. Eng Geol 58:387–397. doi: 10.1016/S0013-7952(00)00044-2 CrossRefGoogle Scholar
  116. Qi S, Yan F, Wang S, Xu R (2006) Characteristics, mechanism and development tendency of deformation of Maoping landslide after commission of Geheyan reservoir on the Qingjiang River, Hubei Province, China. Eng Geol 86:37–51. doi: 10.1016/j.enggeo.2006.04.004 CrossRefGoogle Scholar
  117. Rajendran K, Thulasiraman N, Sreekumari K (2013) Microearthquake activity near the Idukki Reservoir, south India: a rare example of renewed triggered seismicity. Eng Geol 153:45–52. doi: 10.1016/j.enggeo.2012.11.004 CrossRefGoogle Scholar
  118. Reddy DV, Nagabhushanam P (2011) Groundwater electrical conductivity and soil radon gas monitoring for earthquake precursory studies in Koyna, India. Appl Geochem 26:731–737. doi: 10.1016/j.apgeochem.2011.01.031 CrossRefGoogle Scholar
  119. Reddy KR, Richards KS (2012) Experimental investigation of initiation of backward erosion piping in soils. Géotechnique 62:933–942. doi: 10.1680/geot.11.P.058 CrossRefGoogle Scholar
  120. Rennen M, Snæbjörnsson JTh (2008) KHP Field survey and deformation analysis in the Hálslón area (No. 08004). EERC University of Iceland, SelfossGoogle Scholar
  121. Richards KS, Reddy KR (2007) Critical appraisal of piping phenomena in earth dams. Bull Eng Geol Environ 66:381–402. doi: 10.1007/s10064-007-0095-0 CrossRefGoogle Scholar
  122. Ristau J (2013) Plate tectonics. In: Bobrowsky PT (ed) Encyclopedia of natural hazards. Springer, Dordrecht, pp 769–772CrossRefGoogle Scholar
  123. Roje-Bonacci T, Bonacci O (2013) The possible negative consequences of underground dam and reservoir construction and operation in coastal karst areas: an example of the hydro-electric power plant (HEPP) Ombla near Dubrovnik (Croatia). Nat Hazards Earth Syst Sci 13:2041–2052. doi: 10.5194/nhess-13-2041-2013 CrossRefGoogle Scholar
  124. Romanov D, Gabrovšek F, Dreybrodt W (2003) Dam sites in soluble rocks: a model of increasing leakage by dissolutional widening of fractures beneath a dam. Eng Geol 70:17–35. doi: 10.1016/S0013-7952(03)00073-5 CrossRefGoogle Scholar
  125. Romanov D, Kaufmann G, Hiller T (2010) Karstification of aquifers interspersed with non-soluble rocks: from basic principles towards case studies. Eng Geol 116:261–273. doi: 10.1016/j.enggeo.2010.09.008 CrossRefGoogle Scholar
  126. Saint-Laurent D, Touileb BN, Saucet J-P, Whalen A, Gagnon B, Nzakimuena T (2001) Effects of simulated water level management on shore erosion rates. Case study: Baskatong Reservoir, Québec, Canada. Can J Civ Eng 28:482–495CrossRefGoogle Scholar
  127. Saucedo R, Macías JL, Sarocchi D, Bursik M, Rupp B (2008) The rain-triggered Atenquique volcaniclastic debris flow of October 16, 1955 at Nevado de Colima Volcano, Mexico. J Volcanol Geotherm Res 173:69–83. doi: 10.1016/j.jvolgeores.2007.12.045 CrossRefGoogle Scholar
  128. Schenk V, Schenkova Z (2011) Horizontal strain, He-3/He-4 ratio and infra-plate earthquake swarms. Acta Geodyn Geomater 8:303–308Google Scholar
  129. Schenk V, Schenkova Z, Jechumtálová Z (2009) Geodynamic pattern of the West Bohemia region based on permanent GPS measurements. Stud Geophys Geod 53:329–341. doi: 10.1007/s11200-009-0021-y CrossRefGoogle Scholar
  130. Schönbrodt-Stitt S, Behrens T, Schmidt K, Shi X, Scholten T (2013) Degradation of cultivated bench terraces in the three gorges area: field mapping and data mining. Ecol Indic 34:478–493. doi: 10.1016/j.ecolind.2013.06.010 CrossRefGoogle Scholar
  131. Schuster RL (1979) Reservoir-induced landslides. Bull Int As Eng Geol 20:8–15. doi: 10.1007/BF02591233 CrossRefGoogle Scholar
  132. Sepúlveda SA, Murphy W, Jibson RW, Petley DN (2005) Seismically induced rock slope failures resulting from topographic amplification of strong ground motions: the case of Pacoima Canyon, California. Eng Geol 80:336–348. doi: 10.1016/j.enggeo.2005.07.004 CrossRefGoogle Scholar
  133. Sharma S, Kuniyal JC, Sharma JC (2007) Assessment of man-made and natural hazards in the surroundings of hydropower projects under construction in the beas valley of northwestern Himalaya. J Mt Sci 4:221–236. doi: 10.1007/s11629-007-0221-2 CrossRefGoogle Scholar
  134. Sigmundsson F, Hreinsdóttir S, Hooper A, Árnadóttir T, Pedersen R, Roberts MJ, Óskarsson N, Auriac A, Decriem J, Einarsson P, Geirsson H, Hensch M, Ófeigsson BG, Sturkell E, Sveinbjörnsson H, Feigl KL (2010a) Intrusion triggering of the 2010 Eyjafjallajökull explosive eruption. Nature 468:426–430. doi: 10.1038/nature09558 CrossRefGoogle Scholar
  135. Sigmundsson F, Pinel V, Lund B, Albino F, Pagli C, Geirsson H, Sturkell E (2010b) Climate effects on volcanism: influence on magmatic systems of loading and unloading from ice mass variations, with examples from Iceland. Philos Trans R Soc Math Phys Eng Sci 368:2519–2534. doi: 10.1098/rsta.2010.0042 CrossRefGoogle Scholar
  136. Sigtryggsdóttir FG, Ingólfsson P, Snæbjörnsson JTh, Sigbjornsson R (2013a) Organization of the Hálslón reservoir impounding monitoring of geohazards. Presented at the ICOLD 2013 International Symposium, SeattleGoogle Scholar
  137. Sigtryggsdóttir FG, Snæbjörnsson JTh, Ingólfsson P, Sigbjornsson R (2013b) Results from the monitoring of geohazards since the impounding of the Hálslón reservoir. Presented at the ICOLD 2013 international symposium, SeattleGoogle Scholar
  138. Sigtryggsdóttir FG, Snæbjörnsson JT, Grande L, Sigbjörnsson R (2015) Interrelations in multi-source geohazard monitoring for safety management of infrastructure systems. Struct Infrastruct Eng. doi: 10.1080/15732479.2015.1015147 Google Scholar
  139. Simeoni U, Calderoni G, Tessari Umberto (1999) A new application of system theory to foredunes intervention strategies. J Coast Res 15:457–470Google Scholar
  140. Singh C, Ramana DV, Chadha RK, Shekar M (2008) Coseismic responses and the mechanism behind MW 5.1 earthquake of March 14, 2005 in the Koyna-Warna region, India. J Asian Earth Sci 31:499–503. doi: 10.1016/j.jseaes.2007.08.003 CrossRefGoogle Scholar
  141. Singh Y, Bhat GM, Sharma V, Pandita SK, Thakur KK (2012) Reservoir induced landslide at Assar, Jammu and Kashmir: a case study. J Geol Soc India 80:435–439. doi: 10.1007/s12594-012-0162-4 CrossRefGoogle Scholar
  142. Slagel MJ, Griggs GB (2008) Cumulative losses of sand to the California coast by dam impoundment. J Coast Res 243:571–584. doi: 10.2112/06-0640.1 CrossRefGoogle Scholar
  143. Snæbjörnsson JTh, Oddbjörnsson O, Taylor C, Sigbjornsson R (2006) KHP Hálslón area-on the rock fault behaviour induced by impounding of the Hálslón Reservoir: An exploratory study (Report LV-2006/102). Landsvirkjun, ReykjavíkGoogle Scholar
  144. Snoussi M, Kitheka J, Shaghude Y, Kane A, Arthurton R, Tissier ML, Virji H (2007) Downstream and coastal impacts of damming and water abstraction in Africa. Environ Manag 39:587–600. doi: 10.1007/s00267-004-0369-2 CrossRefGoogle Scholar
  145. Sparks RSJ (2003) Forecasting volcanic eruptions. Earth Planet Sci Lett 210:1–15. doi: 10.1016/S0012-821X(03)00124-9 CrossRefGoogle Scholar
  146. Špičák A, Hanuš V, Vaněk J (2004) Seismicity pattern: an indicator of source region of volcanism at convergent plate margins. Struct Tecton Converg Plate Margins 141:303–326. doi: 10.1016/j.pepi.2003.11.005 Google Scholar
  147. Srbulov M (2014) Geo-hazards. Practical guide to geo-engineering. Springer, Dordrecht, pp 93–183CrossRefGoogle Scholar
  148. Stapledon DH (1976) Geological hazards and water storage. Bull Int As Eng Geol 13:249–262. doi: 10.1007/BF02634801 CrossRefGoogle Scholar
  149. Sturkell E, Ágústsson K, Linde AT, Sacks SI, Einarsson P, Sigmundsson F, Geirsson H, Pedersen R, LaFemina PC, Ólafsson H (2013) New insights into volcanic activity from strain and other deformation data for the Hekla 2000 eruption. J Volcanol Geotherm Res 256:78–86. doi: 10.1016/j.jvolgeores.2013.02.001 CrossRefGoogle Scholar
  150. Ta W, Xiao H, Dong Z (2008) Long-term morphodynamic changes of a desert reach of the Yellow River following upstream large reservoirs’ operation. Geomorphology 97:249–259. doi: 10.1016/j.geomorph.2007.08.008 CrossRefGoogle Scholar
  151. Tarvainen T, Jarva J, Greivig S (2006) Spatial pattern of hazards and hazard interaction in Europe. Geol Surv Finl. Spec Pap 42:83–91Google Scholar
  152. Telesca L, do Nascimento AF, Bezerra FHR, Ferreira JM (2012) Analyzing the temporal fluctuations of the reservoir-triggered seismicity observed at Açu (Brazil). Nat Hazards Earth Syst Sci 12:805–811. doi: 10.5194/nhess-12-805-2012
  153. Vilar OM, Rodrigues RA (2011) Collapse behavior of soil in a Brazilian region affected by a rising water table. Can Geotech J 48:226–233. doi: 10.1139/T10-065 CrossRefGoogle Scholar
  154. Vilmundardóttir OK, Magnússon B, Gísladóttir G, Thorsteinsson T (2010) Shoreline erosion and aeolian deposition along a recently formed hydro-electric reservoir, Blöndulón, Iceland. Geomorphology 114:542–555. doi: 10.1016/j.geomorph.2009.08.012 CrossRefGoogle Scholar
  155. Vinciguerra S, Day S (2013) Magma intrusion as a driving mechanism for the seismic clustering following the 9 May 1989 earthquake swarms at the Canary Islands. Acta Geophys 61:1626–1641. doi: 10.2478/s11600-013-0152-y CrossRefGoogle Scholar
  156. Violette S, De Marsily G, Carbonnel JP, Goblet P, Ledoux E, Tijani SM, Vouille G (2001) Can rainfall trigger volcanic eruptions? A mechanical stress model of an active volcano: “Piton de la Fournaise”, Reunion Island. Terra Nova 13:18–24. doi: 10.1046/j.1365-3121.2001.00297.x CrossRefGoogle Scholar
  157. Waitt RB (2013) Lahar. In: Bobrowsky PT (ed) Encyclopedia of natural hazards. Springer, Dordrecht, pp 579–580CrossRefGoogle Scholar
  158. Wan CF, Fell R (2008) Assessing the potential of internal instability and suffusion in embankment dams and their foundations. J Geotech Geoenviron Eng 134:401–407CrossRefGoogle Scholar
  159. Wang C-Y (2006) Liquefaction limit during earthquakes and underground explosions: implications on ground-motion attenuation. Bull Seismol Soc Am 96:355–363. doi: 10.1785/0120050019 CrossRefGoogle Scholar
  160. Wang HB, Xu WY, Xu RC (2005) Slope stability evaluation using back propagation neural networks. Eng Geol 80:302–315. doi: 10.1016/j.enggeo.2005.06.005 CrossRefGoogle Scholar
  161. Wang F, Cheng Q, Highland L, Miyajima M, Wang H, Yan C (2009) Preliminary investigation of some large landslides triggered by the 2008 Wenchuan earthquake, Sichuan Province, China. Landslides 6:47–54. doi: 10.1007/s10346-009-0141-z CrossRefGoogle Scholar
  162. Wang HB, Wu SR, Shi JS, Li B (2013) Qualitative hazard and risk assessment of landslides: a practical framework for a case study in China. Nat Hazards 69:1281–1294. doi: 10.1007/s11069-011-0008-1 CrossRefGoogle Scholar
  163. Wang G, Zhang S, Wang C, Yu M (2014) Seismic performance evaluation of dam-reservoir-foundation systems to near-fault ground motions. Nat Hazards. doi: 10.1007/s11069-013-1028-9 Google Scholar
  164. Wardman JB, Wilson TM, Bodger PS, Cole JW, Stewart C (2012) Potential impacts from tephra fall to electric power systems: a review and mitigation strategies. Bull Volcanol 74:2221–2241. doi: 10.1007/s00445-012-0664-3 CrossRefGoogle Scholar
  165. White RS, Drew J, Martens HR, Key J, Soosalu H, Jakobsdóttir SS (2011) Dynamics of dyke intrusion in the mid-crust of Iceland. Earth Planet Sci Lett 304:300–312. doi: 10.1016/j.epsl.2011.02.038 CrossRefGoogle Scholar
  166. Wieland M (2009) Features of seismic hazard in large dam projects and strong motion monitoring of large dams. Front Archit Civ Eng China 4:56–64. doi: 10.1007/s11709-010-0005-6 CrossRefGoogle Scholar
  167. Wieland M, Bozovic A, Brenner RP (2008) Dam design—the effects of active faults. Int Water Power Dam ConstrGoogle Scholar
  168. Wu Y (2003) Mechanism analysis of hazards caused by the interaction between groundwater and geo-environment. Environ Geol 44:811–819. doi: 10.1007/s00254-003-0819-9 CrossRefGoogle Scholar
  169. Xiao R, He X (2013) Real-time landslide monitoring of Pubugou hydropower resettlement zone using continuous GPS. Nat Hazards. doi: 10.1007/s11069-013-0768-x
  170. Xu L, Dai FC, Gong QM, Tham LG, Min H (2012) Irrigation-induced loess flow failure in Heifangtai Platform, North-West China. Environ Earth Sci 66:1707–1713. doi: 10.1007/s12665-011-0950-y CrossRefGoogle Scholar
  171. Xu C, Xu X, Yu G (2013) Landslides triggered by slipping-fault-generated earthquake on a plateau: an example of the 14 April 2010, Ms 7.1, Yushu, China earthquake. Landslides 10:421–431. doi: 10.1007/s10346-012-0340-x CrossRefGoogle Scholar
  172. Xu L, Meng X, Xu X (2014) Natural hazard chain research in China: a review. Nat Hazards 70:1631–1659. doi: 10.1007/s11069-013-0881-x CrossRefGoogle Scholar
  173. Yan F, Xinbin T, Li G (2004) The uplift mechanism of the rock masses around the Jiangya dam after reservoir inundation, China. Eng Geol 76:141–154. doi: 10.1016/j.enggeo.2004.06.011 CrossRefGoogle Scholar
  174. Yin H, Wdowinski S (2013) Improved detection of earthquake-induced ground motion with spatial filter: case study of the 2012M = 7.6 Costa Rica earthquake. GPS Solut. doi: 10.1007/s10291-013-0353-5
  175. Yuce G, Ugurluoglu DY, Adar N, Yalcin T, Yaltirak C, Streil T, Oeser V (2010) Monitoring of earthquake precursors by multi-parameter stations in Eskisehir region (Turkey). Appl Fluid Gas Geochem Geohazards Investig 25:572–579. doi: 10.1016/j.apgeochem.2010.01.013 Google Scholar
  176. Zhang J-M, Yang Z-Y, Gao X-Z, Tong Z-X (2010a) Lessons from Damages to high embankment dams in the May 12, 2008 Wenchuan earthquake. Presented at the proceedings of the 2010 GeoShanghai international conference, Shanghai, China, pp 1–1. doi: 10.1061/41102(375)1
  177. Zhang W, Li H-Z, Chen J, Zhang C, Xu L, Sang W (2010b) Comprehensive hazard assessment and protection of debris flows along Jinsha River close to the Wudongde dam site in China. Nat Hazards 58:459–477. doi: 10.1007/s11069-010-9680-9 CrossRefGoogle Scholar
  178. Zhang Y, Gao F, Ping J, Zhang X (2013a) A synthetic method for earthquake prediction by multidisciplinary data. Nat Hazards 69:1199–1209. doi: 10.1007/s11069-011-9961-y CrossRefGoogle Scholar
  179. Zhang Y, Shao JF, Xu WY, Sun HK (2013b) Stability analysis of a large landslide in hydropower engineering. Nat Hazards. doi: 10.1007/s11069-013-0826-4
  180. Zhao Q, Liu S, Deng L, Dong S, Yang J, Wang C (2012) The effects of dam construction and precipitation variability on hydrologic alteration in the Lancang River Basin of southwest China. Stoch Environ Res Risk Assess 26:993–1011CrossRefGoogle Scholar
  181. Zobin VM (2001) Seismic hazard of volcanic activity. J Volcanol Geotherm Res 112:1–14. doi: 10.1016/S0377-0273(01)00230-X CrossRefGoogle Scholar
  182. Zou Y, Qiu S, Kuang Y, Huang N (2013) Analysis of a major storm over the Dongjiang reservoir basin associated with Typhoon Bilis (2006). Nat Hazards 69:201–218. doi: 10.1007/s11069-013-0696-9 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Earthquake Engineering Research CentreUniversity of IcelandSelfossIceland
  2. 2.Department of Civil and Transport Engineering, Faculty of Engineering Science and TechnologyNTNUTrondheimNorway
  3. 3.School of Science and EngineeringReykjavík UniversityReykjavíkIceland
  4. 4.Department of Structural Engineering, Faculty of Engineering Science and TechnologyNTNUTrondheimNorway
  5. 5.Department of Mechanical and Structural Engineering and Materials ScienceUniversity of StavangerStavangerNorway

Personalised recommendations