Skip to main content

Advertisement

Log in

Methodology for geohazard assessment for hydropower projects

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

The paper presents a comprehensive methodology for a multihazard assessment, including an associated multihazard monitoring programme. An existing method in system theory is extended for multiple systems and used to demonstrate the importance of considering geohazard interrelations in the safety monitoring of reservoirs and dams. The method is applied to systems of geohazards and monitoring parameters. In both systems, there is a reservoir retained by one or more dams. Geohazards in hydropower project perspectives as well as monitoring opportunities are classified. The results are presented in a colour-coded matrix visually mapping ranked interrelations for the two systems. The methodology proposed provides a clear view on the prospective that individual geohazards may trigger other geohazards as well as on the geohazard-triggering potential of the reservoir itself. The warning potential of the possible monitoring parameters is also mapped and interrelated to the individual geohazards. The results demonstrate the importance of a comprehensive multidisciplinary monitoring programme for reliable operation and risk management of hydropower projects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdel-Monem MS, Mohamed HH, Saleh M, Abou-Aly N (2012) Seismicity and 10-years recent crustal deformation studies at Aswan region, Egypt. Acta Geodyn Geomater 9:221–236

    Google Scholar 

  • Albino F, Pinel V, Sigmundsson F (2010) Influence of surface load variations on eruption likelihood: application to two Icelandic subglacial volcanoes, Grímsvötn and Katla. Geophys J Int. doi:10.1111/j.1365-246X.2010.04603.x

  • Alho P, Roberts M, Käyhkö J (2007) Estimating the inundation area of a massive, hypothetical jökulhlaup from northwest Vatnajökull, Iceland. Nat Hazards 41:21–42. doi:10.1007/s11069-006-9007-z

    Article  Google Scholar 

  • Ataie-Ashtiani B, Yavari-Ramshe S (2011) Numerical simulation of wave generated by landslide incidents in dam reservoirs. Landslides 8:417–432. doi:10.1007/s10346-011-0258-8

    Article  Google Scholar 

  • Avila R, Moberg L (1999) A systematic approach to the migration of 137Cs in forest ecosystems using interaction matrices. J Environ Radioact 45:271–282. doi:10.1016/S0265-931X(98)00111-8

    Article  Google Scholar 

  • Barclay J, Johnstone JE, Matthews AJ (2006) Meteorological monitoring of an active volcano: implications for eruption prediction. J Volcanol Geotherm Res 150:339–358. doi:10.1016/j.jvolgeores.2005.07.020

    Article  Google Scholar 

  • Biggs J, Chivers M, Hutchinson MC (2013) Surface deformation and stress interactions during the 2007–2010 sequence of earthquake, dyke intrusion and eruption in northern Tanzania. Geophys J Int 195:16–26. doi:10.1093/gji/ggt226

    Article  Google Scholar 

  • Björnsson G (2002) Kárahnjúkavirkjun sýnd veiði en ekki gefin (in Icelandic) [WWW document]. http://www.orkustofnun.is/media/frettir/Athugasemdir-GB-140202.pdf

  • Bohannon J (2010) The Nile Delta’s sinking future. Science 327:1444–1447. doi:10.1126/science.327.5972.1444

    Article  Google Scholar 

  • Bonacci O, Roje-Bonacci T (2008) Water losses from the Ričice reservoir built in the Dinaric karst. Eng Geol 99:121–127. doi:10.1016/j.enggeo.2007.11.014

    Article  Google Scholar 

  • Bonaccorso A, Currenti G, Del Negro C (2013) Interaction of volcano-tectonic fault with magma storage, intrusion and flank instability: a thirty years study at Mt. Etna volcano. J Volcanol Geotherm Res 251:127–136. doi:10.1016/j.jvolgeores.2012.06.002

    Article  Google Scholar 

  • Bryant WA (2013) Fault. In: Bobrowsky PT (ed) Encyclopedia of natural hazards. Springer, Dordrecht, pp 317–321

    Chapter  Google Scholar 

  • Cañón-Tapia E (2014) Volcanic eruption triggers: a hierarchical classification. Earth Sci Rev 129:100–119. doi:10.1016/j.earscirev.2013.11.011

    Article  Google Scholar 

  • Carminati E, Enzi S, Camuffo D (2007) A study on the effects of seismicity on subsidence in foreland basins: an application to the Venice area. Glob Planet Change 55:237–250. doi:10.1016/j.gloplacha.2006.03.003

    Article  Google Scholar 

  • Cassidy JF (2013) Earthquake. In: Bobrowsky PT (ed) Encyclopedia of natural hazards. Springer, Dordrecht, pp 208–223

    Chapter  Google Scholar 

  • Chadha RK, Kuempel H-J, Shekar M (2008) Reservoir triggered seismicity (RTS) and well water level response in the Koyna-Warna region, India. Tectonophysics 456:94–102. doi:10.1016/j.tecto.2006.11.010

    Article  Google Scholar 

  • Chia Y, Liu C, Lee C (2011) Groundwater level changes induced by crustal deformation. AGU Fall Meet Abstracts. http://adsabs.harvard.edu/abs/2011AGUFM.T43D2386C

  • Chittibabu P, Rao YR (2011) Numerical simulation of storm surges in Lake Winnipeg. Nat Hazards 60:181–197. doi:10.1007/s11069-011-0002-7

    Article  Google Scholar 

  • Cole-Dai J (2010) Volcanoes and climate. Wiley Interdiscip Rev Clim Change 1:824–839. doi:10.1002/wcc.76

    Article  Google Scholar 

  • Corti T, Muccione V, Köllner-Heck P, Bresch D, Seneviratne SI (2009) Simulating past droughts and associated building damages in France. Hydrol Earth Syst Sci 13:1739–1747

    Article  Google Scholar 

  • Cui P, Zhu X (2011) Surge generation in reservoirs by landslides triggered by the wenchuan earthquake. J Earthq Tsunami 05:461–474. doi:10.1142/S1793431111001194

    Article  Google Scholar 

  • Cuomo G (2013) Surge. In: Bobrowsky PT (ed) Encyclopedia of natural hazards. Springer, Dordrecht, pp 987–988

    Chapter  Google Scholar 

  • Danard M, Munro A, Murty T (2003) Storm surge hazard in Canada. Nat Hazards 28:407–434. doi:10.1023/A:1022990310410

    Article  Google Scholar 

  • De Pippo T, Donadio C, Pennetta M, Petrosino C, Terlizzi F, Valente A (2008) Coastal hazard assessment and mapping in Northern Campania, Italy. Geomorphology 97:451–466. doi:10.1016/j.geomorph.2007.08.015

    Article  Google Scholar 

  • Degu AM, Hossain F, Niyogi D, Pielke R, Shepherd JM, Voisin N, Chronis T (2011) The influence of large dams on surrounding climate and precipitation patterns: dams and local climate. Geophys Res Lett. doi:10.1029/2010GL046482

  • Do Nascimento AF, Cowie PA, Lunn RJ, Pearce RG (2004) Spatio-temporal evolution of induced seismicity at Açu reservoir, NE Brazil: induced seismicity at Açu reservoir. Geophys J Int 158:1041–1052. doi:10.1111/j.1365-246X.2004.02351.x

    Article  Google Scholar 

  • Dussaillant A, Benito G, Buytaert W, Carling P, Meier C, Espinoza F (2009) Repeated glacial-lake outburst floods in Patagonia: an increasing hazard? Nat Hazards 54:469–481. doi:10.1007/s11069-009-9479-8

    Article  Google Scholar 

  • Eggert S, Walter TR (2009) Volcanic activity before and after large tectonic earthquakes: observations and statistical significance. Tectonophysics 471:14–26. doi:10.1016/j.tecto.2008.10.003

    Article  Google Scholar 

  • Fell R, Wan CF, Cyganiewicz J, Foster M (2003) Time for development of internal erosion and piping in embankment dams. J Geotech Geoenviron Eng 129:307–314. doi:10.1061/(ASCE)1090-0241(2003)129:4(307)

    Article  Google Scholar 

  • FEMA (2005) Federal guidelines for dam safety. Earthquake analyses and design of dams. FEMA

  • FERC (2005) Chapter 14—Dam safety performance monitoring program. In: Engineering guidelines for the evaluation of hydropower project. Federal Energy Regulatory Comission (FERC), Office of Energy Projects

  • FERC (2010) Chapter 9—Instrumentation and monitoring. In: Engineering guidelines for the evaluation of hydropower project. Federal Energy Regulatory Comission (FERC), Office of Energy Projects

  • Ferreira JM, França GS, Vilar CS, do Nascimento AF, Bezerra FHR, Assumpção M (2008) Induced seismicity in the Castanhão reservoir, NE Brazil—preliminary results. Monit Induc Seism Obs Models Interpret 456:103–110. doi:10.1016/j.tecto.2006.11.011

  • Foster M, Fell R, Spannagle M (2000) The statistics of embankment dam failures and accidents. Can Geotech J 37:1000–1024. doi:10.1139/t00-030

    Article  Google Scholar 

  • Frough O, Torabi SR (2013) An application of rock engineering systems for estimating TBM downtimes. Eng Geol 157:112–123. doi:10.1016/j.enggeo.2013.02.003

    Article  Google Scholar 

  • Fujita H (1977) Influence of water level fluctuations in a reservoir on slope stability. Bull Int As Eng Geol 16:170–173. doi:10.1007/BF02591474

    Article  Google Scholar 

  • Gahalaut K, Gahalaut VK, Pandey MR (2007) A new case of reservoir triggered seismicity: Govind Ballav Pant reservoir (Rihand dam), central India. Tectonophysics 439:171–178. doi:10.1016/j.tecto.2007.04.003

    Article  Google Scholar 

  • Gatto LW (1984) Reservoir bank erosion caused by ice. Cold Reg Sci Technol 9:203–214. doi:10.1016/0165-232X(84)90067-3

    Article  Google Scholar 

  • Gatto L, Doe W III (1987) Bank conditions and erosion along selected reservoirs. Environ Geol Water Sci 9:143–154. doi:10.1007/BF02449947

    Article  Google Scholar 

  • Geirsson H, Árnadóttir Th, Hreinsdóttir S (2010) Overview of results from continuous GPS observations in Iceland from 1995 to 2010. Jökull 60:3–22

    Google Scholar 

  • Geirsson H, LaFemina P, Árnadóttir T, Sturkell E, Sigmundsson F, Travis M, Schmidt P, Lund B, Hreinsdóttir S, Bennett R (2012) Volcano deformation at active plate boundaries: deep magma accumulation at Hekla volcano and plate boundary deformation in south Iceland. J Geophys Res. doi:10.1029/2012JB009400

    Google Scholar 

  • Goodman RE, Powell C (2003) Investigations of blocks in foundations and abutments of concrete dams. J Geotech Geoenviron Eng 129:105–116. doi:10.1061/(ASCE)1090-0241(2003)129:2(105)

    Article  Google Scholar 

  • Gráková M, Mantlík F, Schenk V, Schenková Z (2007) Data processing of GNSS observations of the geonas network—effects of extreme meteorological conditions. Acta Geodyn Geomater 4:153–161

    Google Scholar 

  • Gupta HK (2001) Short-term earthquake forecasting may be feasible at Koyna, India. Tectonophysics 338:353–357. doi:10.1016/S0040-1951(01)00083-X

    Article  Google Scholar 

  • Gupta HK (2002) A review of recent studies of triggered earthquakes by artificial water reservoirs with special emphasis on earthquakes in Koyna, India. Earth Sci Rev 58:279–310. doi:10.1016/S0012-8252(02)00063-6

    Article  Google Scholar 

  • Gupta HK (2013) Triggered earthquakes. In: Bobrowsky PT (ed) Encyclopedia of natural hazards. Springer, Dordrecht, pp 1031–1036

    Chapter  Google Scholar 

  • Gvelesiani TL, Ostroverkh BN, Dzhindzhikhashvili GY, Eranosyan SO, Reznikova VI (1989) Predicting wave formation in mountain reservoirs during landfalls and landslides. Hydrotech Constr 23:725–730. doi:10.1007/BF01440341

    Article  Google Scholar 

  • Heinz WF (2012) Dams founded on dispersive soils and rocks drilling and grouting under difficult conditions. Am Soc Civil Eng. doi:10.1061/9780784412350.0094

    Google Scholar 

  • Hiller T, Kaufmann G, Romanov D (2011) Karstification beneath dam-sites: from conceptual models to realistic scenarios. J Hydrol 398:202–211. doi:10.1016/j.jhydrol.2010.12.014

    Article  Google Scholar 

  • Hossain F (2010) Empirical relationship between large dams and the alteration in extreme precipitation. Nat Hazards Rev 11:97–101. doi:10.1061/(ASCE)NH.1527-6996.0000013

    Article  Google Scholar 

  • Hossain F, Jeyachandran I, Pielke R (2010) Dam safety effects due to human alteration of extreme precipitation: dam safety and extreme precipitation. Water Resour Res. doi:10.1029/2009WR007704

    Google Scholar 

  • Huang Y, Jiang X (2010) Field-observed phenomena of seismic liquefaction and subsidence during the 2008 Wenchuan earthquake in China. Nat Hazards 54:839–850. doi:10.1007/s11069-010-9509-6

    Article  Google Scholar 

  • Huang Y, Zheng H, Zhuang Z (2011) Seismic liquefaction analysis of a reservoir dam foundation in the south-north water diversion project in China. Part I: liquefaction potential assessment. Nat Hazards 60:1299–1311. doi:10.1007/s11069-011-9910-9

    Article  Google Scholar 

  • Huang B, Yin Y, Liu G, Wang S, Chen X, Huo Z (2012) Analysis of waves generated by Gongjiafang landslide in Wu Gorge, three Gorges reservoir, on November 23, 2008. Landslides 9:395–405. doi:10.1007/s10346-012-0331-y

    Article  Google Scholar 

  • Hudson J (1992) Rock engineering systems: theory and practice. Ellis Horwood, Chichester

    Google Scholar 

  • ICOLD (1993) Dams and environment, Geophysical impacts (Bulletin No. 90). ICOLD-CIGB, Paris

  • ICOLD (1995) Dam failures statistical analysis (Bulletin No. 99). ICOLD-CIGB, Paris

  • ICOLD (1998) Neotectonics and dams (Bulletin No. 112). ICOLD-CIGB, Paris

  • ICOLD (1999) Seismic observation of dams. Guidelines and case studies (Bulletin No. 113). ICOLD-CIGB, Paris

  • ICOLD (2005) Dam foundations. Geologic considerations. Investigation methods. Treatment Monitoring. (Bulletin No. 129). ICOLD-CIGB, Paris

  • ICOLD (2007) Embankment dams on permafrost. A review of the Russian experience. (Bulletin No. 133). ICOLD-CIGB, Paris

  • ICOLD (2009a) Sedimentation and sustainable use of reservoirs and river systems (Bulletin No. 147). ICOLD-CIGB, Paris

  • ICOLD (2009b) Surveillance: basic elements in a “Dam Safety” process (Bulletin No. 138). ICOLD-CIGB, Paris

  • ICOLD (2011) Reservoirs and seismicity (Bulletin No. 137). ICOLD-CIGB, Paris

  • ICOLD (2013a) Dam surveillance guide (Bulletin No. 158). ICOLD-CIGB, Paris

  • ICOLD (2013b) Dam safety management: operational phase of the dam life cycle (Bulletin No. 154). ICOLD-CIGB, Paris

  • Itaba S (2008) Groundwater changes associated with the 2004 Niigata-Chuetsu and 2007 Chuetsu-oki earthquakes. Earth Planets Space 60:1161–1168

    Article  Google Scholar 

  • Itaba S, Koizumi N, Takahashi N (2008) Crustal movement and groundwater changes associated with the episodic deep low frequency tremors and slow slip events in the southern part of Kii Peninsula, Japan. AGU Fall Meet Abstr

  • Jaboyedoff M, Horton P, Derron M-H, Longchamp C, Michoud C (2013) Monitoring natural hazards. In: Bobrowsky PT (ed) Encyclopedia of natural hazards. Springer, Dordrecht, pp 686–696

    Chapter  Google Scholar 

  • Jakobsdóttir SS, Roberts MJ, Guđmundsson GB, Geirsson H, Slunga R (2008) Earthquake swarms at Upptyppingar, north-east Iceland: a sign of magma intrusion? Stud Geophys Geod 52:513–528. doi:10.1007/s11200-008-0035-x

    Article  Google Scholar 

  • Johnson K (2008) Gypsum-karst problems in constructing dams in the USA. Environ Geol 53:945–950. doi:10.1007/s00254-007-0720-z

    Article  Google Scholar 

  • Jonbjarnason B, Sigmundsson F, Ofeigsson B, Sturkell EC (2010) Crustal effects of the Hálslón water reservoir, Iceland: a three-dimensional model of the Earth’s response. In: Fall meeting, abstracts. American Geophysical Union

  • Kamiyama M, Sugito M, Kuse M (2012) Precursor of crustal movements before the 2011 great east japan earthquake. Presented at the proceedings of the international symposium on engineering lessons learned from the 2011 Great East Japan Earthquake, Japan

  • Kappes M, Keiler M, Elverfeldt K, Glade T (2012) Challenges of analyzing multi-hazard risk: a review. Nat Hazards 64:1925–1958. doi:10.1007/s11069-012-0294-2

    Article  Google Scholar 

  • Kattelmann R (2003) Glacial lake outburst floods in the Nepal Himalaya: a manageable hazard? Nat Hazards 28:145–154. doi:10.1023/A:1021130101283

    Article  Google Scholar 

  • Kieffer DS, Goodman RE (2012) Assessing scour potential of unlined rock spillways with the block scour spectrum/Beurteilung der Kolkbildung in nicht ausgekleideten Hochwasserentlastungen in Fels mittels des Block Scour Spectrums. Geomech Tunn 5:527–536. doi:10.1002/geot.201200039

    Article  Google Scholar 

  • Klyuchevskii AV, Demyanovich VM, Klyuchevskaya AA (2012) The possibility of a tsunami on Lake Baikal. Dokl Earth Sci 442:130–134. doi:10.1134/S1028334X1201014X

    Article  Google Scholar 

  • Komac B, Zorn M (2013) Geohazards. In: Bobrowsky PT (ed) Encyclopedia of natural hazards. Springer, Dordrecht, p 387

    Chapter  Google Scholar 

  • Kondolf GM (1997) PROFILE: hungry water: effects of dams and gravel mining on river channels. Environ Manag 21:533–551. doi:10.1007/s002679900048

    Article  Google Scholar 

  • Kvalstad T (2007) What is the current “best practice” in offshore geohazard investigations? A state-of-the-art review. The Offshore Technology Conference. doi:10.4043/18545-MS

  • Lacasse S, Nadim F, Lacasse S, Nadim F (2009) Landslide risk assessment and mitigation strategy. In: Sassa K, Canuti P (eds) Landslides—disaster risk reduction. Springer, Berlin, pp 31–61

    Chapter  Google Scholar 

  • Lane R (1974) Investigations of seismicity at dam/reservoir sites. Eng Geol 8:95–98. doi:10.1016/0013-7952(74)90015-5

    Article  Google Scholar 

  • Langer H, Falsaperla S, Messina A, Spampinato S, Behncke B (2011) Detecting imminent eruptive activity at Mt Etna, Italy, in 2007–2008 through pattern classification of volcanic tremor data. J Volcanol Geotherm Res 200:1–17. doi:10.1016/j.jvolgeores.2010.11.019

    Article  Google Scholar 

  • Lavallée Y, Stix J, Kennedy B, Richer M, Longpré M-A (2004) Caldera subsidence in areas of variable topographic relief: results from analogue modeling. Role Lab Exp Volcanol 129:219–236. doi:10.1016/S0377-0273(03)00241-5

    Google Scholar 

  • Li K, Zhu C, Wu L, Huang L (2013) Problems caused by the three gorges dam construction in the Yangtze River basin: a review. Environ Rev 21:127–135. doi:10.1139/er-2012-0051

    Article  Google Scholar 

  • Liu X, Wang S, Wang E (2011) A study on the uplift mechanism of Tongjiezi dam using a coupled hydro-mechanical model. Eng Geol 117:134–150. doi:10.1016/j.enggeo.2010.10.013

    Article  Google Scholar 

  • Lomnitz C (1974) Earthquakes and reservoir impounding: state of the art. Eng Geol 8:191–198. doi:10.1016/0013-7952(74)90024-6

    Article  Google Scholar 

  • Loughlin SC (2013) Volcanoes and volcanic eruptions. In: Bobrowsky PT (ed) Encyclopedia of natural hazards. Springer, Dordrecht, pp 1077–1088

    Chapter  Google Scholar 

  • Lu Y, Zuo L, Ji R, Liu H (2010) Deposition and erosion in the fluctuating backwater reach of the three gorges project after upstream reservoir adjustment. Int J Sediment Res 25:64–80. doi:10.1016/S1001-6279(10)60028-5

    Article  Google Scholar 

  • Lu D, Fitzgerald R, Stockwell W, Reddy R, White L (2013) Numerical simulation for a wind dust event in the US/Mexico border region. Air Qual Atmos Health 6:317–331. doi:10.1007/s11869-012-0174-7

    Article  Google Scholar 

  • Lunn RJ, do Nascimento AF, Cowie P (2004) Investigating the relationship between fault permeability and effective stress using constraints from reservoir induced seismicity (ris). In: Stephanson O (ed) Elsevier geo-engineering book series. Elsevier, Amsterdam, pp 617–622

  • Mahmoud SM (2003) Seismicity and GPS-derived crustal deformation in Egypt. J Geodyn 35:333–352. doi:10.1016/S0264-3707(02)00135-7

    Article  Google Scholar 

  • Marker B (2013) Land subsidence. In: Bobrowsky P (ed) Encyclopedia of natural hazards, encyclopedia of earth sciences series. Springer, Berlin, pp 583–590

    Chapter  Google Scholar 

  • Martens HR, White RS (2013) Triggering of microearthquakes in Iceland by volatiles released from a dyke intrusion. Geophys J Int 194(3):1738–1754. doi:10.1093/gji/ggt184

    Article  Google Scholar 

  • Marzocchi W, Garcia-Aristizabal A, Gasparini P, Mastellone M, Di Ruocco A (2012) Basic principles of multi-risk assessment: a case study in Italy. Nat Hazards 62:551–573. doi:10.1007/s11069-012-0092-x

    Article  Google Scholar 

  • Matsumoto N, Koizumi N (2013) Recent hydrological and geochemical research for earthquake prediction in Japan. Nat Hazards 69:1247–1260. doi:10.1007/s11069-011-9980-8

    Article  Google Scholar 

  • McCall GJH, Laming DJC, Scott SC (eds) (1992) Geohazards. Springer, Dordrecht

    Google Scholar 

  • McCalpin JP (2013) Tectonic and tectono-seismic hazards. In: Bobrowsky PT (ed) Encyclopedia of natural hazards. Springer, Dordrecht, pp 994–1004

    Chapter  Google Scholar 

  • McGinnis LD (1963) Earthquakes and crustal movement as related to water load in the Mississippi valley region (Circular No. 344). Illinois State Geological Survey, Urbana

  • Meade R (1991) Reservoirs and earthquakes. Eng Geol 30:245–262. doi:10.1016/0013-7952(91)90062-P

    Article  Google Scholar 

  • Mejia L, Forrest M, Bischoff J, Gillon M, Everitt S (1999) Upgrading of Matahina dam for foundation fault displacement. Am Soc Civil Eng. doi:10.1061/40440(1999)19

    Google Scholar 

  • Mekkawi M (2004) A long-lasting relaxation of seismicity at Aswan reservoir, Egypt, 1982–2001. Bull Seismol Soc Am 94:479–492. doi:10.1785/0120030067

    Article  Google Scholar 

  • Mendes-Victor LA, Oliveira CS (2013) Introduction, including overview. Nat Hazards 69:1143–1153. doi:10.1007/s11069-013-0792-x

    Article  Google Scholar 

  • Muço B (2013) The atmospheric water as a triggering factor for earthquakes in the central Virginia seismic zone. Nat Hazards. doi:10.1007/s11069-013-0902-9

    Google Scholar 

  • Murton J (2013) Permafrost. In: Bobrowsky P (ed) Encyclopedia of natural hazards, encyclopedia of earth sciences series. Springer, Dordrecht, pp 759–764

    Chapter  Google Scholar 

  • Najafi-Jilani A, Ataie-Ashtiani B (2012) Laboratory investigation of wave run-up caused by landslides in dam reservoirs. Q J Eng Geol Hydrogeol 45:89–98. doi:10.1144/1470-9236/09-035

    Article  Google Scholar 

  • Nonveiller E (1987) The Vajont reservoir slope failure. Eng Geol 24:493–512. doi:10.1016/0013-7952(87)90081-0

    Article  Google Scholar 

  • Ogata Y (2011) Pre-seismic anomalies in seismicity and crustal deformation: case studies of the 2007 Noto Hanto earthquake of M6.9 and the 2007 Chuetsu-oki earthquake of M6.8 after the 2004 Chuetsu earthquake of M6.8: 2007 Noto Hanto and Chuetsu-oki earthquakes. Geophys J Int 186:331–348. doi:10.1111/j.1365-246X.2011.05033.x

    Article  Google Scholar 

  • Osti R, Bhattarai TN, Miyake K (2011) Causes of catastrophic failure of Tam Pokhari moraine dam in the Mt. Everest region. Nat Hazards 58:1209–1223. doi:10.1007/s11069-011-9723-x

    Article  Google Scholar 

  • Pandey AP, Chadha RK (2003) Surface loading and triggered earthquakes in the Koyna-Warna region, western India. Phys Earth Planet Inter 139:207–223. doi:10.1016/j.pepi.2003.08.003

    Article  Google Scholar 

  • Panza GF, Peresan A, Magrin A, Vaccari F, Sabadini R, Crippa B, Marotta AM, Splendore R, Barzaghi R, Borghi A, Cannizzaro L, Amodio A, Zoffoli S (2011) The SISMA prototype system: integrating geophysical modeling and earth observation for time-dependent seismic hazard assessment. Nat Hazards 69:1179–1198. doi:10.1007/s11069-011-9981-7

    Article  Google Scholar 

  • Peinke J, Matcharashvili T, Chelidze T, Gogiashvili J, Nawroth A, Lursmanashvili O, Javakhishvili Z (2006) Influence of periodic variations in water level on regional seismic activity around a large reservoir: field data and laboratory model. Phys Earth Planet Inter 156:130–142. doi:10.1016/j.pepi.2006.02.010

    Article  Google Scholar 

  • Peng M, Li XY, Li DQ, Jiang SH, Zhang LM (2013) Slope safety evaluation by integrating multi-source monitoring information. Struct Saf. doi:10.1016/j.strusafe.2013.08.007

    Google Scholar 

  • Petrakov DA, Tutubalina OV, Aleinikov AA, Chernomorets SS, Evans SG, Kidyaeva VM, Krylenko IN, Norin SV, Shakhmina MS, Seynova IB (2012) Monitoring of Bashkara Glacier lakes (Central Caucasus, Russia) and modelling of their potential outburst. Nat Hazards 61:1293–1316. doi:10.1007/s11069-011-9983-5

    Article  Google Scholar 

  • Prestininzi A, Romeo R (2000) Earthquake-induced ground failures in Italy. Eng Geol 58:387–397. doi:10.1016/S0013-7952(00)00044-2

    Article  Google Scholar 

  • Qi S, Yan F, Wang S, Xu R (2006) Characteristics, mechanism and development tendency of deformation of Maoping landslide after commission of Geheyan reservoir on the Qingjiang River, Hubei Province, China. Eng Geol 86:37–51. doi:10.1016/j.enggeo.2006.04.004

    Article  Google Scholar 

  • Rajendran K, Thulasiraman N, Sreekumari K (2013) Microearthquake activity near the Idukki Reservoir, south India: a rare example of renewed triggered seismicity. Eng Geol 153:45–52. doi:10.1016/j.enggeo.2012.11.004

    Article  Google Scholar 

  • Reddy DV, Nagabhushanam P (2011) Groundwater electrical conductivity and soil radon gas monitoring for earthquake precursory studies in Koyna, India. Appl Geochem 26:731–737. doi:10.1016/j.apgeochem.2011.01.031

    Article  Google Scholar 

  • Reddy KR, Richards KS (2012) Experimental investigation of initiation of backward erosion piping in soils. Géotechnique 62:933–942. doi:10.1680/geot.11.P.058

    Article  Google Scholar 

  • Rennen M, Snæbjörnsson JTh (2008) KHP Field survey and deformation analysis in the Hálslón area (No. 08004). EERC University of Iceland, Selfoss

  • Richards KS, Reddy KR (2007) Critical appraisal of piping phenomena in earth dams. Bull Eng Geol Environ 66:381–402. doi:10.1007/s10064-007-0095-0

    Article  Google Scholar 

  • Ristau J (2013) Plate tectonics. In: Bobrowsky PT (ed) Encyclopedia of natural hazards. Springer, Dordrecht, pp 769–772

    Chapter  Google Scholar 

  • Roje-Bonacci T, Bonacci O (2013) The possible negative consequences of underground dam and reservoir construction and operation in coastal karst areas: an example of the hydro-electric power plant (HEPP) Ombla near Dubrovnik (Croatia). Nat Hazards Earth Syst Sci 13:2041–2052. doi:10.5194/nhess-13-2041-2013

    Article  Google Scholar 

  • Romanov D, Gabrovšek F, Dreybrodt W (2003) Dam sites in soluble rocks: a model of increasing leakage by dissolutional widening of fractures beneath a dam. Eng Geol 70:17–35. doi:10.1016/S0013-7952(03)00073-5

    Article  Google Scholar 

  • Romanov D, Kaufmann G, Hiller T (2010) Karstification of aquifers interspersed with non-soluble rocks: from basic principles towards case studies. Eng Geol 116:261–273. doi:10.1016/j.enggeo.2010.09.008

    Article  Google Scholar 

  • Saint-Laurent D, Touileb BN, Saucet J-P, Whalen A, Gagnon B, Nzakimuena T (2001) Effects of simulated water level management on shore erosion rates. Case study: Baskatong Reservoir, Québec, Canada. Can J Civ Eng 28:482–495

    Article  Google Scholar 

  • Saucedo R, Macías JL, Sarocchi D, Bursik M, Rupp B (2008) The rain-triggered Atenquique volcaniclastic debris flow of October 16, 1955 at Nevado de Colima Volcano, Mexico. J Volcanol Geotherm Res 173:69–83. doi:10.1016/j.jvolgeores.2007.12.045

    Article  Google Scholar 

  • Schenk V, Schenkova Z (2011) Horizontal strain, He-3/He-4 ratio and infra-plate earthquake swarms. Acta Geodyn Geomater 8:303–308

    Google Scholar 

  • Schenk V, Schenkova Z, Jechumtálová Z (2009) Geodynamic pattern of the West Bohemia region based on permanent GPS measurements. Stud Geophys Geod 53:329–341. doi:10.1007/s11200-009-0021-y

    Article  Google Scholar 

  • Schönbrodt-Stitt S, Behrens T, Schmidt K, Shi X, Scholten T (2013) Degradation of cultivated bench terraces in the three gorges area: field mapping and data mining. Ecol Indic 34:478–493. doi:10.1016/j.ecolind.2013.06.010

    Article  Google Scholar 

  • Schuster RL (1979) Reservoir-induced landslides. Bull Int As Eng Geol 20:8–15. doi:10.1007/BF02591233

    Article  Google Scholar 

  • Sepúlveda SA, Murphy W, Jibson RW, Petley DN (2005) Seismically induced rock slope failures resulting from topographic amplification of strong ground motions: the case of Pacoima Canyon, California. Eng Geol 80:336–348. doi:10.1016/j.enggeo.2005.07.004

    Article  Google Scholar 

  • Sharma S, Kuniyal JC, Sharma JC (2007) Assessment of man-made and natural hazards in the surroundings of hydropower projects under construction in the beas valley of northwestern Himalaya. J Mt Sci 4:221–236. doi:10.1007/s11629-007-0221-2

    Article  Google Scholar 

  • Sigmundsson F, Hreinsdóttir S, Hooper A, Árnadóttir T, Pedersen R, Roberts MJ, Óskarsson N, Auriac A, Decriem J, Einarsson P, Geirsson H, Hensch M, Ófeigsson BG, Sturkell E, Sveinbjörnsson H, Feigl KL (2010a) Intrusion triggering of the 2010 Eyjafjallajökull explosive eruption. Nature 468:426–430. doi:10.1038/nature09558

    Article  Google Scholar 

  • Sigmundsson F, Pinel V, Lund B, Albino F, Pagli C, Geirsson H, Sturkell E (2010b) Climate effects on volcanism: influence on magmatic systems of loading and unloading from ice mass variations, with examples from Iceland. Philos Trans R Soc Math Phys Eng Sci 368:2519–2534. doi:10.1098/rsta.2010.0042

    Article  Google Scholar 

  • Sigtryggsdóttir FG, Ingólfsson P, Snæbjörnsson JTh, Sigbjornsson R (2013a) Organization of the Hálslón reservoir impounding monitoring of geohazards. Presented at the ICOLD 2013 International Symposium, Seattle

  • Sigtryggsdóttir FG, Snæbjörnsson JTh, Ingólfsson P, Sigbjornsson R (2013b) Results from the monitoring of geohazards since the impounding of the Hálslón reservoir. Presented at the ICOLD 2013 international symposium, Seattle

  • Sigtryggsdóttir FG, Snæbjörnsson JT, Grande L, Sigbjörnsson R (2015) Interrelations in multi-source geohazard monitoring for safety management of infrastructure systems. Struct Infrastruct Eng. doi:10.1080/15732479.2015.1015147

    Google Scholar 

  • Simeoni U, Calderoni G, Tessari Umberto (1999) A new application of system theory to foredunes intervention strategies. J Coast Res 15:457–470

    Google Scholar 

  • Singh C, Ramana DV, Chadha RK, Shekar M (2008) Coseismic responses and the mechanism behind MW 5.1 earthquake of March 14, 2005 in the Koyna-Warna region, India. J Asian Earth Sci 31:499–503. doi:10.1016/j.jseaes.2007.08.003

    Article  Google Scholar 

  • Singh Y, Bhat GM, Sharma V, Pandita SK, Thakur KK (2012) Reservoir induced landslide at Assar, Jammu and Kashmir: a case study. J Geol Soc India 80:435–439. doi:10.1007/s12594-012-0162-4

    Article  Google Scholar 

  • Slagel MJ, Griggs GB (2008) Cumulative losses of sand to the California coast by dam impoundment. J Coast Res 243:571–584. doi:10.2112/06-0640.1

    Article  Google Scholar 

  • Snæbjörnsson JTh, Oddbjörnsson O, Taylor C, Sigbjornsson R (2006) KHP Hálslón area-on the rock fault behaviour induced by impounding of the Hálslón Reservoir: An exploratory study (Report LV-2006/102). Landsvirkjun, Reykjavík

    Google Scholar 

  • Snoussi M, Kitheka J, Shaghude Y, Kane A, Arthurton R, Tissier ML, Virji H (2007) Downstream and coastal impacts of damming and water abstraction in Africa. Environ Manag 39:587–600. doi:10.1007/s00267-004-0369-2

    Article  Google Scholar 

  • Sparks RSJ (2003) Forecasting volcanic eruptions. Earth Planet Sci Lett 210:1–15. doi:10.1016/S0012-821X(03)00124-9

    Article  Google Scholar 

  • Špičák A, Hanuš V, Vaněk J (2004) Seismicity pattern: an indicator of source region of volcanism at convergent plate margins. Struct Tecton Converg Plate Margins 141:303–326. doi:10.1016/j.pepi.2003.11.005

    Google Scholar 

  • Srbulov M (2014) Geo-hazards. Practical guide to geo-engineering. Springer, Dordrecht, pp 93–183

    Chapter  Google Scholar 

  • Stapledon DH (1976) Geological hazards and water storage. Bull Int As Eng Geol 13:249–262. doi:10.1007/BF02634801

    Article  Google Scholar 

  • Sturkell E, Ágústsson K, Linde AT, Sacks SI, Einarsson P, Sigmundsson F, Geirsson H, Pedersen R, LaFemina PC, Ólafsson H (2013) New insights into volcanic activity from strain and other deformation data for the Hekla 2000 eruption. J Volcanol Geotherm Res 256:78–86. doi:10.1016/j.jvolgeores.2013.02.001

    Article  Google Scholar 

  • Ta W, Xiao H, Dong Z (2008) Long-term morphodynamic changes of a desert reach of the Yellow River following upstream large reservoirs’ operation. Geomorphology 97:249–259. doi:10.1016/j.geomorph.2007.08.008

    Article  Google Scholar 

  • Tarvainen T, Jarva J, Greivig S (2006) Spatial pattern of hazards and hazard interaction in Europe. Geol Surv Finl. Spec Pap 42:83–91

  • Telesca L, do Nascimento AF, Bezerra FHR, Ferreira JM (2012) Analyzing the temporal fluctuations of the reservoir-triggered seismicity observed at Açu (Brazil). Nat Hazards Earth Syst Sci 12:805–811. doi:10.5194/nhess-12-805-2012

  • Vilar OM, Rodrigues RA (2011) Collapse behavior of soil in a Brazilian region affected by a rising water table. Can Geotech J 48:226–233. doi:10.1139/T10-065

    Article  Google Scholar 

  • Vilmundardóttir OK, Magnússon B, Gísladóttir G, Thorsteinsson T (2010) Shoreline erosion and aeolian deposition along a recently formed hydro-electric reservoir, Blöndulón, Iceland. Geomorphology 114:542–555. doi:10.1016/j.geomorph.2009.08.012

    Article  Google Scholar 

  • Vinciguerra S, Day S (2013) Magma intrusion as a driving mechanism for the seismic clustering following the 9 May 1989 earthquake swarms at the Canary Islands. Acta Geophys 61:1626–1641. doi:10.2478/s11600-013-0152-y

    Article  Google Scholar 

  • Violette S, De Marsily G, Carbonnel JP, Goblet P, Ledoux E, Tijani SM, Vouille G (2001) Can rainfall trigger volcanic eruptions? A mechanical stress model of an active volcano: “Piton de la Fournaise”, Reunion Island. Terra Nova 13:18–24. doi:10.1046/j.1365-3121.2001.00297.x

    Article  Google Scholar 

  • Waitt RB (2013) Lahar. In: Bobrowsky PT (ed) Encyclopedia of natural hazards. Springer, Dordrecht, pp 579–580

    Chapter  Google Scholar 

  • Wan CF, Fell R (2008) Assessing the potential of internal instability and suffusion in embankment dams and their foundations. J Geotech Geoenviron Eng 134:401–407

    Article  Google Scholar 

  • Wang C-Y (2006) Liquefaction limit during earthquakes and underground explosions: implications on ground-motion attenuation. Bull Seismol Soc Am 96:355–363. doi:10.1785/0120050019

    Article  Google Scholar 

  • Wang HB, Xu WY, Xu RC (2005) Slope stability evaluation using back propagation neural networks. Eng Geol 80:302–315. doi:10.1016/j.enggeo.2005.06.005

    Article  Google Scholar 

  • Wang F, Cheng Q, Highland L, Miyajima M, Wang H, Yan C (2009) Preliminary investigation of some large landslides triggered by the 2008 Wenchuan earthquake, Sichuan Province, China. Landslides 6:47–54. doi:10.1007/s10346-009-0141-z

    Article  Google Scholar 

  • Wang HB, Wu SR, Shi JS, Li B (2013) Qualitative hazard and risk assessment of landslides: a practical framework for a case study in China. Nat Hazards 69:1281–1294. doi:10.1007/s11069-011-0008-1

    Article  Google Scholar 

  • Wang G, Zhang S, Wang C, Yu M (2014) Seismic performance evaluation of dam-reservoir-foundation systems to near-fault ground motions. Nat Hazards. doi:10.1007/s11069-013-1028-9

    Google Scholar 

  • Wardman JB, Wilson TM, Bodger PS, Cole JW, Stewart C (2012) Potential impacts from tephra fall to electric power systems: a review and mitigation strategies. Bull Volcanol 74:2221–2241. doi:10.1007/s00445-012-0664-3

    Article  Google Scholar 

  • White RS, Drew J, Martens HR, Key J, Soosalu H, Jakobsdóttir SS (2011) Dynamics of dyke intrusion in the mid-crust of Iceland. Earth Planet Sci Lett 304:300–312. doi:10.1016/j.epsl.2011.02.038

    Article  Google Scholar 

  • Wieland M (2009) Features of seismic hazard in large dam projects and strong motion monitoring of large dams. Front Archit Civ Eng China 4:56–64. doi:10.1007/s11709-010-0005-6

    Article  Google Scholar 

  • Wieland M, Bozovic A, Brenner RP (2008) Dam design—the effects of active faults. Int Water Power Dam Constr

  • Wu Y (2003) Mechanism analysis of hazards caused by the interaction between groundwater and geo-environment. Environ Geol 44:811–819. doi:10.1007/s00254-003-0819-9

    Article  Google Scholar 

  • Xiao R, He X (2013) Real-time landslide monitoring of Pubugou hydropower resettlement zone using continuous GPS. Nat Hazards. doi:10.1007/s11069-013-0768-x

  • Xu L, Dai FC, Gong QM, Tham LG, Min H (2012) Irrigation-induced loess flow failure in Heifangtai Platform, North-West China. Environ Earth Sci 66:1707–1713. doi:10.1007/s12665-011-0950-y

    Article  Google Scholar 

  • Xu C, Xu X, Yu G (2013) Landslides triggered by slipping-fault-generated earthquake on a plateau: an example of the 14 April 2010, Ms 7.1, Yushu, China earthquake. Landslides 10:421–431. doi:10.1007/s10346-012-0340-x

    Article  Google Scholar 

  • Xu L, Meng X, Xu X (2014) Natural hazard chain research in China: a review. Nat Hazards 70:1631–1659. doi:10.1007/s11069-013-0881-x

    Article  Google Scholar 

  • Yan F, Xinbin T, Li G (2004) The uplift mechanism of the rock masses around the Jiangya dam after reservoir inundation, China. Eng Geol 76:141–154. doi:10.1016/j.enggeo.2004.06.011

    Article  Google Scholar 

  • Yin H, Wdowinski S (2013) Improved detection of earthquake-induced ground motion with spatial filter: case study of the 2012M = 7.6 Costa Rica earthquake. GPS Solut. doi:10.1007/s10291-013-0353-5

  • Yuce G, Ugurluoglu DY, Adar N, Yalcin T, Yaltirak C, Streil T, Oeser V (2010) Monitoring of earthquake precursors by multi-parameter stations in Eskisehir region (Turkey). Appl Fluid Gas Geochem Geohazards Investig 25:572–579. doi:10.1016/j.apgeochem.2010.01.013

    Google Scholar 

  • Zhang J-M, Yang Z-Y, Gao X-Z, Tong Z-X (2010a) Lessons from Damages to high embankment dams in the May 12, 2008 Wenchuan earthquake. Presented at the proceedings of the 2010 GeoShanghai international conference, Shanghai, China, pp 1–1. doi:10.1061/41102(375)1

  • Zhang W, Li H-Z, Chen J, Zhang C, Xu L, Sang W (2010b) Comprehensive hazard assessment and protection of debris flows along Jinsha River close to the Wudongde dam site in China. Nat Hazards 58:459–477. doi:10.1007/s11069-010-9680-9

    Article  Google Scholar 

  • Zhang Y, Gao F, Ping J, Zhang X (2013a) A synthetic method for earthquake prediction by multidisciplinary data. Nat Hazards 69:1199–1209. doi:10.1007/s11069-011-9961-y

    Article  Google Scholar 

  • Zhang Y, Shao JF, Xu WY, Sun HK (2013b) Stability analysis of a large landslide in hydropower engineering. Nat Hazards. doi:10.1007/s11069-013-0826-4

  • Zhao Q, Liu S, Deng L, Dong S, Yang J, Wang C (2012) The effects of dam construction and precipitation variability on hydrologic alteration in the Lancang River Basin of southwest China. Stoch Environ Res Risk Assess 26:993–1011

    Article  Google Scholar 

  • Zobin VM (2001) Seismic hazard of volcanic activity. J Volcanol Geotherm Res 112:1–14. doi:10.1016/S0377-0273(01)00230-X

    Article  Google Scholar 

  • Zou Y, Qiu S, Kuang Y, Huang N (2013) Analysis of a major storm over the Dongjiang reservoir basin associated with Typhoon Bilis (2006). Nat Hazards 69:201–218. doi:10.1007/s11069-013-0696-9

    Article  Google Scholar 

Download references

Acknowledgments

Constructive comments from two anonymous reviewers improved the paper and are sincerely appreciated. The first author gratefully acknowledges the financial support from the Iceland Catastrophe Insurance and the Landsvirkjun (National Power Company of Iceland) Energy Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fjóla G. Sigtryggsdóttir.

Appendix

Appendix

The submatrices of the two-system interrelation matrix are presented as tables in this appendix. In the main text, Fig. 3b describes connection of the appended tables to Fig. 4. In Tables A-1 through A-4, the following three stages of interrelation, triggering, or alarm potential are identified: “Strong”, “Medium”, and “Weak”. These stages are presented in the tables along with a short description where relevant as well as appropriate reference to the literature. The different stages and options used are defined in Table A-0.

Table A-0 Legend for Tables A-1 through A-4

Table A-1 is divided into four parts for readability. Figure 3c in the main text explains this division. The interrelation matrix presented in Tables A-1.1 through A-1.4 defines geohazard interrelation and interactions. Possible interrelations as well as cascading effects from triggering are accounted for. Additionally, possible impact of individual geohazards on safety and sustainability of the reservoir is considered. In the case of impaired safety, potential damages or failures of dams and appurtenant structures are accounted for. The damage/failure possibility comprises loss of life and/or damage to or failure of a reservoir/dam or the surrounding environment.

In Table A-2, the effects of geohazards on monitoring parameters are accounted for. These effects can also be from cascading effects. If a monitoring parameter is directly linked to a particular geohazard, this is indicated with a brownish colour of the relevant cell and the abbreviation IS. However, the brownish cell colour without the IS abbreviation indicates indirect monitoring explaining that the geohazard in the same row as the cell does not induce changes in the monitoring parameter in the same column as the cell, although the monitoring parameter might provide alarm for this particular geohazard.

The alarm potential of each monitoring parameter with respect to individual geohazard is presented in Table A-3. Additionally, the value of the monitoring parameter for back calculation and evaluation of the respective geohazards is accounted for.

Finally, the interrelation of monitoring parameters is described in Table A-4. Cascading effects are not considered in this table.

Table A-1.1 Geohazard interrelation part 1

Table A-1.2 Geohazard interrelation part 2

Table A-1.3 Geohazard interrelation, part 3

  1. aGoodman and Powell (2003)
  2. bDegu et al. (2011), Zhao et al. (2012), Hossain (2010), and Hossain et al. (2010)
  3. cZou et al. (2013)

Table A-1.4 Geohazard interrelation, part 4

Table A-2 Geohazard and reservoir effects on monitoring parameters

  1. aRajendran et al. (2013), Telesca et al. (2012), Ferreira et al. (2008), Gahalaut et al. (2007), Peinke et al. (2006), Do Nascimento et al. (2004), Lunn et al. (2004), Gupta (2001)
  2. bItaba (2008), Chadha et al. (2008), Singh et al. (2008). Alarm potential (Reddy and Nagabhushanam 2011; Yuce et al. 2010; Zhang et al. 2013a)
  3. cGupta (2013), Pandey and Chadha (2003), Mekkawi (2004), Gupta (2002)
  4. dDef is abbreviation for deformation

Table A-3 Alarm potential of monitoring parameters and usability for back-calculations

  1. aSparks (2003), Bonaccorso et al. (2013), Langer et al. (2011), Špičák et al. (2004)
  2. bGoodman and Powell (2003)

Table A-4 Monitoring parameter interrelation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sigtryggsdóttir, F.G., Snæbjörnsson, J.T., Grande, L. et al. Methodology for geohazard assessment for hydropower projects. Nat Hazards 79, 1299–1331 (2015). https://doi.org/10.1007/s11069-015-1906-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-015-1906-4

Keywords

Navigation