Advertisement

Natural Hazards

, Volume 79, Issue 2, pp 675–697 | Cite as

Seismic scenario including site-effect determination in Torreperogil and Sabiote, Jaén (Spain), after the 2013 earthquake sequence

  • Juan Rueda
  • Julio Mezcua
  • Rosa M. García Blanco
  • Alberto Núñez
  • María Fernández de Villalta
Original Paper

Abstract

The recent seismic activity recorded in Jaén province in the south-east Iberian Peninsula has triggered great alarm among the people of the towns of Torreperogil and Sabiote despite the low magnitude of the events. The main objective of this paper is to examine why these low-magnitude events are responsible for such a high degree of concern in this area of low seismicity. Of all possible explanations, including directivity effects and local geology, we found that the site effect was the most important candidate for clarifying this phenomenon. An earthquake scenario was considered for the maximum 5.2 Mw shock that could occur in the event of the rupture of the identified responsible blind fault. In order to simulate the strong motion derived from such as extreme event, a stochastic finite-fault simulation was generated using the standard values of the different media parameters for the region and a stress drop of 130 bar, deduced from the simulation of the greatest shock of the sequence. In order to include the site effect, which was considered to be very important in this study, a local survey using refraction micro-tremor (ReMi) techniques was performed in both towns (at 33 and 35 sites in Torreperogil and Sabiote, respectively) to determine the Vs30 values. The site response results obtained were taken into account in the simulation process, and the results are shown on peak ground acceleration (PGA) and peak ground velocity (PGV) contour maps for each town, with 200–500 cm/s2 as PGA extreme values. A map of intensities obtained from the PGV map is also shown; for the extreme event, macroseismic EMS98 intensities in the range of V–VII were obtained for those towns. The deterministic earthquake scenario developed here will be of great interest in planning civil defence responses in the event of an earthquake emergency and in regional development.

Keywords

Earthquake ground motion simulation Site effects Earthquake scenario 

Notes

Acknowledgments

This study was funded by the Instituto Geográfico Nacional of Spain. We would like to thank the municipalities of Torreperogil and Sabiote for the facilities in the ReMi data collection, and Hector Lamolda, Sergio Sainz-Maza and Ignacio Sánchez from IGN for their help and Prof. Peláez for providing the relocated seismicity of the earthquake sequence. We are grateful to Editor V. Schenk and two anonymous reviewers for their comments that helped to improve this paper. Michael Lockwood is acknowledged for the English proofreading. This study was funded by Instituto Geográfico Nacional.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Akkar S, Bommer JJ (2010) Empirical equations for the prediction of PGA, PGV, and spectral accelerations in Europe, the Mediterranean Region, and the Middle East. Seismol Res Lett 81:195–206CrossRefGoogle Scholar
  2. Ambraseys NN, Simpson KA, Bommer JJ (1996) Prediction of horizontal response spectra in Europe. Earthq Eng struct Dyn 25:371–400CrossRefGoogle Scholar
  3. Anserson JG, Lee Y, Zeng Y, Day S (1996) Control of strong motion by the upper 30 m. Bull Seism Soc Am 86:1749–1759Google Scholar
  4. Beresnev I, Atkinson GM (1997) Modelling finite-fault radiation from ωn spectrum. Bull Seism Soc Am 87:67–84Google Scholar
  5. Beresnev I, Atkinson GM (2002) Source parameters of earthquakes in eastern and western North America based on finite-fault modeling. Bull Seism Soc Am 92:695–710CrossRefGoogle Scholar
  6. Bommer JJ, Douglas J, Strasser FO (2003) Style-of-faulting in ground-motion prediction equations. Bull Earthq Eng 1:171–203CrossRefGoogle Scholar
  7. Boore DM (2005) Fortran programs for simulating ground motions from earthquakes: version 2.3-A revision of OFR 96-80-A. US Geol Surv Open-File Report 00-509Google Scholar
  8. Borcherdt RD, Glassmoyer G (1992) On the characteristics of local geology and their influence on ground motions generated by the Loma Prieta earthquake in the San Francisco Bay region, California. Bull Seism Soc Am 82:603–641Google Scholar
  9. Cabañas L, López M, Benito B, Jiménez ME (2000) Estimation of PGA attenuation laws for Spain and Mediterranean region. Comparison with other ground motion models. In: Proceedings of the XXVII General Assembly of the European Seismological Commission (ESC), Lisbon, Portugal, 10–15 SeptemberGoogle Scholar
  10. Castellaro S, Murlargia F, Rossi PL (2008) Vs30: proxy for seismic amplification? Seism Res Lett 79:540–543CrossRefGoogle Scholar
  11. Douglas J, Bungum H, Scherbaum F (2006) Ground-motion prediction equations for Southern Spain and Southern Norway obtained using the composite model perspective. J Earthq Eng 10:33–72CrossRefGoogle Scholar
  12. Eurocode-8 (1998) Design of structures for earthquake resistance-part 1: general rules, seismic actions and rules for buildings. EN-1998. European Committee for Standardization, BrusselsGoogle Scholar
  13. Federal Emergency Management Agency (FEMA) (1997) 1997 NEHRP recommended provisions for seismic regulations for new buildings, Washington D.C., developed by the Building Seismic Safety Council (BSSC) for the Federal Emergency Management Agency (FEMA)Google Scholar
  14. García Tortosa FJ, Peláez JA, Sánchez Gómez M, Pérez Valera F, Sanz de Galdeano C (2013) Zonas de falla en la región epicentral de la serie sísmica de Torreperogil-Sabiote (2012-2013). In: Proceedings of the VIII meeting of Iberian quaternary, Sevilla-La Rinconada, Spain, 3–6 October (in Spanish)Google Scholar
  15. González-Drigo R, Pérez-Gracia V, Pujades L, Caselles O, Canas JA (2003) Distribución de Q de coda y análisis de la atenuación sísmica intrínseca y dispersiva en la Península Ibérica. Rev Int Mét Num Cálc Dis Ing 19:211–237 (in Spanish) Google Scholar
  16. Grüntal G, Levret A (ed) (2001) European Macroseismic Scale 1998 (EMS-98). Cahiers du Centre Europeén de Geodynamique et de Sismologie 15, 103 ppGoogle Scholar
  17. Instituto Geológico y Minero de España (IGME) (1994) Mapa Geológico de España a escala 1:1.000.000. CD. Instituto Geológico y Minero de España, Madrid (in Spanish)Google Scholar
  18. Joyner WB, Warrick RE, Fumal TE (1981) The effect of Quaternary alluvium on strong ground motion in the Coyote Lake, California, earthquake of 1979. Bull Seism Soc Am 71:1333–1349Google Scholar
  19. Lermo J, Chávez-García FJ (1994) Are microtremors useful in site response evaluation? Bull Seism Soc Am 84:1350–1364Google Scholar
  20. Louie JN (2001) Faster, better: shear-wave velocity to 100 m depth from refraction microtremor arrays. Bull Seism Soc Am 91:347–364CrossRefGoogle Scholar
  21. Mezcua J, García Blanco RM, Rueda J (2008) On the strong ground motion attenuation in Spain. Bull Seism Soc Am 98:1343–1353CrossRefGoogle Scholar
  22. Mezcua J, Rueda J, García Blanco RM (2011) A new probabilistic seismic hazard study of Spain. Nat Hazards 59:1087–1108CrossRefGoogle Scholar
  23. Mezcua J, Rueda J, García Blanco RM (2013) Observed and calculated intensities as a test of a probabilistic seismic hazard analysis of Spain. Seism Res Lett 84:772–780. doi: 10.1785/0220130020 CrossRefGoogle Scholar
  24. Morales J, Azañón JM, Stich D, Roldán FJ, Pérez-Peña JV, Martín R, Cantavella JV, Martín JB, Mancilla F, González-Ramón A (2014) The 2012–2013 earthquake swarm in the Eastern Guadalquivir basin (South Spain): A case of heterogeneous faulting due to oroclinal bending. Gondwana Res. doi: 10.1016/j.gr.2014.10.017 Google Scholar
  25. Motazedian D, Atkinson GM (2005) Stochastic finite-fault modeling based on a dynamic corner frequency. Bull Seism Soc Am 95:995–1010CrossRefGoogle Scholar
  26. Motis K, Martínez del Olmo W (2012) Los cabalgamientos ciegos del Alto Guadalquivir (provincia de Jaén). Geotemas 13:1–4 (in Spanish) Google Scholar
  27. Nakamura Y (1989) A method for dynamic characteristic estimation of subsurface using microtremor on the ground surface. Q Rep RTRI 30:25–33Google Scholar
  28. Núñez A, Rueda J, Mezcua J (2013) A site amplification factor map of the Iberian Peninsula and the Balearic Islands. Nat Hazards 65:461–476CrossRefGoogle Scholar
  29. Odum JK, Stephenson WJ, Williams RA (2010) Predicted and observed spectral response from collocated shallow, active -and passive- source Vs data at five ANSS sites, Illinois and Indiana, USA. Seism Res Lett 81:955–964CrossRefGoogle Scholar
  30. Odum JK, Stephenson WJ, Williams RA, Hillebrandt-Andrade C (2013) Vs30 and spectral response from collocated shallow, active -and passive- source Vs data at 27 sits in Puerto Rico. Bull Seism Soc Am 103:2709–2728CrossRefGoogle Scholar
  31. Pancha A, Anderson JG, Louie JN (2007) Characterization of near-surface geology at strong-motion stations in the vicinity of Reno, Nevada. Bull Seism Soc Am 97:2096–2117CrossRefGoogle Scholar
  32. Pedrera A, Ruiz-Constán A, Marín-Lechado C, Galindo-Zaldívar J, González A, Peláez JA (2013) Seismic transpressive basement faults and monocline development in a foreland basin (Eastern Guadalquivir, SE Spain). Tectonics 32:1571–1586CrossRefGoogle Scholar
  33. Peláez JA, García Tortosa FJ, Sánchez Gómez M, Pérez Valera F, Sanz de Galdeano C, Henares J, Hamdache M (2014) Serie sísmica de Torreperogil-Sabiote (Jaén, Cuenca alta del Guadalquivir). Características y datos de campo. 8ª Asamblea Hispano-Portuguesa de Geodesia y Geofísica. 29–31 enero, 2014. Évora, Portugal, pp 84–88 (in Spanish)Google Scholar
  34. Rey J, Redondo L, Aguado R (1995) Relleno, durante el Tortoniense inferior, de paleocubetas en las proximidades de Úbeda (provincia de Jaén). Bol Geol Min 106:215–218 (in Spanish) Google Scholar
  35. Rueda J, Mezcua J (2005) Near-real-time seismic momento-tensor determination in Spain. Seism Res Lett 76:455–465Google Scholar
  36. Saito M (1979) Computation of reflectivity and surface wave dispersion curves for layered media. I. Sound wave and SH wave. Butsuri-Tanko 32:15–26Google Scholar
  37. Sánchez Gómez M, Peláez JA, García Tortosa FJ, Pérez Valera F, Sanz de Galdeano C (2014) Fallas y deformación reciente en Torreperogil (Cuenca del Guadalquivir): relaciones con la serie sísmica de 2012–2013. 2ª Reunión Ibérica sobre Fallas Activas y Paleosismología. 22–24 octubre, 2014. Lorca, Murcia (in Spanish)Google Scholar
  38. Scott JB, Rasmussen T, Luke B, Taylor WJ, Wagoner JL, Smith SB, Louie JN (2006) Shallow shear velocity and seismic microzonation of the urban Las Vegas, Nevada, Basin. Bull Seism Soc Am 96:1068–1077CrossRefGoogle Scholar
  39. Stephenson WJ, Louie JN, Williams RA, Odum JK (2005) Blind shear-wave velocity comparison of ReMi and MASW results with boreholes to 200 m in Santa Clara Valley: implications for earthquake ground-motion assessment. Bull Seism Soc Am 95:2506–2516CrossRefGoogle Scholar
  40. Thorson JR, Claerbout JF (1985) Velocity-stack and slant-stack stochastic inversion. Geophysics 50:2727–2741CrossRefGoogle Scholar
  41. Wald DJ, Quitoriano V, Heaton TH, Kanamori H (1999) Relationships between peak ground acceleration, peak ground velocity, and modified Mercalli intensity in California. Earthq Spectra 15:557–564CrossRefGoogle Scholar
  42. Waldhauser F, Ellsworth WL (2000) A double-difference earthquake location algorithm: method and application to the northern Hayward fault. Bull Seism Soc Am 90:1353–1368CrossRefGoogle Scholar
  43. Wathelet M, Jongmans D, Ohrnberger M, Bonnefoy-Claudet S (2008) Array performances for ambient vibrations on a shallow structure and consequences over Vs inversion. J Seismolog 12:1–19CrossRefGoogle Scholar
  44. Wells D, Coppersmith K (1994) New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull Seism Soc Amer 84:974–1002Google Scholar
  45. Wills CJ, Silva W (1998) Shear-wave velocity characteristics on geologic units in California. Earthq Spectra 14:533–556CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Juan Rueda
    • 1
    • 2
    • 3
  • Julio Mezcua
    • 3
  • Rosa M. García Blanco
    • 2
  • Alberto Núñez
    • 2
  • María Fernández de Villalta
    • 4
  1. 1.Instituto Geográfico NacionalMadridSpain
  2. 2.Universidad Politécnica de MadridMadridSpain
  3. 3.Fundación José García SiñerizMadridSpain
  4. 4.Instituto Geográfico NacionalMadridSpain

Personalised recommendations