Natural Hazards

, Volume 83, Issue 1, pp 1–17 | Cite as

Dynamic monitoring of soil wind erosion in Inner Mongolia of China during 1985–2011 based on geographic information system and remote sensing

  • Yi Zhou
  • Bing Guo
  • Shixin Wang
  • Heping Tao
  • Wenliang Liu
  • Guang Yang
  • Jinfeng Zhu
Original Paper


In Inner Mongolia, soil wind erosion is a serious environmental problem. The aim of the study was to develop an estimation model to analyze the spatial and temporal changes of soil wind erosion during 1985–2011 based on geographic information system and remote sensing. The results showed that wind erosion was widely distributed in Inner Mongolia with an area of approximately 95 × 104 km2. During 1985–2011, wind erosion has deteriorated over the entire region of Inner Mongolia, which was indicated by enlarged zones of erosion at severe and intensive grades. There was a significant difference in change intensity among different plant types that zones occupied by barren or sparsely vegetation showed the severest deterioration while the wind erosion of cropland showed a slight improvement in wind erosion. In addition, a significantly negative relation was noted between change intensity of wind erosion and vegetation coverage. Furthermore, the change rate of wind erosion was negatively correlated with the number of days (wind velocity ≥6 m/s). The relationships between soil types and change intensity differed with the surface distributions of sandy, loamy and clayey soil with particle sizes of 0–1 cm. The soil type of haplic luvisols showed the strongest resistance to wind erosion. The results have certain significance for understanding the mechanism and change process of wind erosion and can provide a scientific basis for the prevention of wind erosion in Inner Mongolia.


Wind erosion Estimation model Inner Mongolia Soil erodibility Snow cover days Aridity index 



This work was supported by Foundation of Director of Institute of Remote Sensing and Digital Earth, Chinese Academy of Science (No. Y4SY0200CX) and Special Project on High Resolution of Earth Observation System for Major Function Oriented Zones Planning (No. 00-Y30B14-9001-14/16).


  1. Beier C, Emmett B, Gundersen P et al (2004) Novel approaches to study climate change effects on terrestrial ecosystems in the field: drought and passive nighttime warming. Ecosystems 7(6):583–597. doi: 10.1007/s10021-004-0178-8 CrossRefGoogle Scholar
  2. Bilbro JD, Fryrear DW (1994) Wind erosion losses as related to plant silhouette and soil cover. Agron J 86(3):550–553CrossRefGoogle Scholar
  3. Bruin S (2000) Predicting the areal extent of land-cover types using classified imagery and geostatistics. Remote Sens Environ 74(3):387–396. doi: 10.1016/S0034-4257(00)00132-2 CrossRefGoogle Scholar
  4. Bryan RB (1968) The development, use and efficiency of indices of soil erodibility. Geoderma 2(3):5–26CrossRefGoogle Scholar
  5. Buschiazzo DE, Zobeck TM (2008) Validation of WEQ, RWEQ and WEPS wind erosion for different arable land management systems in the Argentinean Pampas. Earth Surf Proc Land 33(12):1839–1850. doi: 10.1002/esp.1738 CrossRefGoogle Scholar
  6. Cesari D, Contini D, Genga A et al (2012) Analysis of raw soils and their re-suspended PM10 fractions: characterisation of source profiles and enrichment factors. Appl Geochem 27(6):1238–1246. doi: 10.1016/j.apgeochem.2012.02.029 CrossRefGoogle Scholar
  7. Chappell A, Zobeck TM, Brunner G (2006) Using bi-directional soil spectral reflectance to model soil surface changes induced by rainfall and wind-tunnel abrasion. Remote Sens Environ 102(3–4):328–343. doi: 10.1016/j.rse.2006.02.020 CrossRefGoogle Scholar
  8. Chen SQ, Wang LJ, Lv SH et al (2007) Study of NDVI and climate change in Maqu County, upstream of Yellow river. J Glaciol Geocryol 29(1):131–136 (in Chinese) Google Scholar
  9. Chung SH, Herron-Thorpe FL, Lamb BK et al (2013) Application of the wind erosion prediction system in the airpact regional air quality modeling framework. Trans Asabe 56(2):625–641CrossRefGoogle Scholar
  10. Cohen MJ, Shepherd KD, Walsh MG (2005) Empirical reformulation of the universal soil loss equation for erosion risk assessment in a tropical watershed. Geoderma 124(3–4):235–252. doi: 10.1016/j.geoderma.2004.05.003 CrossRefGoogle Scholar
  11. Duan AM, Wu GX, Zhang Q (2006) New proofs of the recent climate warming over the Tibetan Plateau as a result of the increasing greenhouse gases emissions. Chin Sci Bull 51(11):1396–1400. doi: 10.1007/s11434-006-1396-6 CrossRefGoogle Scholar
  12. Fan L, Liu S, Bernhofer C et al (2007) Regional land surface energy fluxes by satellite remote sensing in the Upper Xilin River Watershed (Inner Mongolia, China). Theor Appl Climatol 88(3–4):231–245. doi: 10.1007/s00704-006-0241-9 CrossRefGoogle Scholar
  13. Feng G, Sharratt B (2007) Scaling from field to region for wind erosion prediction using the Wind Erosion Prediction System and graphical information systems. Appl Res 62(5):321–328 (In Chinese) Google Scholar
  14. Fister W, Ries JB (2009) Wind erosion in the Central Ebro Basin under changing land use management. Field experiments with a small, portable wind tunnel. J Arid Environ 73(11):996–1004. doi: 10.1016/j.jaridenv.2009.05.006 CrossRefGoogle Scholar
  15. Fu XF, Yang ST, Liu CM (2007) Changes of NDVI and their relations with principal climatic factors in the Yarlung Zangbo River Basin. Geographic Research 26(1):60–66 (In Chinese) Google Scholar
  16. Geeves GW, Leys JF, McTainsh GH (2000) Soil Erodibility. In: Charman PEV, Murphy BW (eds) Soils: their properties and management. Oxford University Press, New York, pp 205–220Google Scholar
  17. Gong DY, Shi PJ (2003) Northern hemispheric NDVI variations associated with large-scale climate indices in spring. Int J Remote Sens 24(12):2559–2566. doi: 10.1080/0143116031000075107 CrossRefGoogle Scholar
  18. Grini A, Zender CS (2004) Roles of saltation, sandblasting, and wind speed variability on mineral dust aerosol size distribution during the Puerto Rican Dust Experiment (PRIDE). J Geophys Res 109(7):102–108. doi: 10.1029/2003JD004233 Google Scholar
  19. Hagen LJ (1991) A wind erosion prediction system to meet users needs. J Soil Water Conserv 46(2):106–111Google Scholar
  20. Hall DK, Riggs GA (2007) Accuracy assessment of the MODIS snow products. Hydrol Process 21(12):1534–1547. doi: 10.1002/hyp.6715 CrossRefGoogle Scholar
  21. Hoffmann C, Funk R, Li Y et al (2008) Effect of grazing on wind driven carbon and nitrogen ratios in the grasslands of Inner Mongolia. Catena 75(2):182–190. doi: 10.1016/j.catena.2008.06.003 CrossRefGoogle Scholar
  22. Huete AR, Tucker CJ (1991) Investigation of soil influences in AVHRR red and near infrared vegetation index imagery. Int J Remote Sens 12(6):1223–1242CrossRefGoogle Scholar
  23. Jenks GF (1967) The data model concept in statistical mapping. Int Yearbook Cartogr 7:186–190Google Scholar
  24. Jiang DM, Liu ZM, Cao CY et al (2003) Desertification and ecological restoration of Horqin sandy land. China Environmental Science Press, Beijing, pp 32–142Google Scholar
  25. Korcz MJ, Fudala Klis C (2009) Estimation of wind blown dust emissions in Europe and its vicinity. Atmos Environ 43(7):1410–1420. doi: 10.1016/j.atmosenv.2008.05.027 CrossRefGoogle Scholar
  26. Li SG, Harazono Y, Oikawa T et al (2000) Grassland desertification by grazing and the resulting micrometeorological changes in Inner Mongolia. Agric For Meteorol 102(2–3):125–137. doi: 10.1016/S0168-1923(00)00101-5 Google Scholar
  27. Li FR, Zhao AF, Zhou HY et al (2002a) Effects of simulated grazing on grown and persistence of Artemisia frigida in a semiarid sandy rangelands. Grass Forage Sci 57(3):239–247. doi: 10.1046/j.1365-2494.2002.00322.x CrossRefGoogle Scholar
  28. Li LH, Han XG, Wang QB et al (2002b) Correlations between plant biomass and soil respiration in a Leymus chinensis community in the Xilin River Basin of Inner Mongolia. Acta Bot Sin 44(5):593–597 (In Chinese) Google Scholar
  29. Li FR, Zhang H, Zhang TH et al (2003) Variations of sand transportation rates in sandy grasslands along a desertification gradient in northern China. Catena 53(3):257–276. doi: 10.1016/S0341-8162(03)00039-0 CrossRefGoogle Scholar
  30. McHenry JR, Ritchie JC (1977) Physical and chemical parameters affecting transport of CS -137 in arid watersheds. Water Resour Res 13(6):923–927. doi: 10.1029/WR013i006p00923 CrossRefGoogle Scholar
  31. Miao CY, He BH, Chen XY et al (2004) Analysis on correlativity of soil erodibility factors of USLE and WEPP models. Soil Water Conserv China 6(5):23–26 (In Chinese) Google Scholar
  32. Nakano T, Nemoto M, Shinoda M (2008) Environmental controls on photosynthetic production and ecosystem respiration in semi-arid grasslands of Mongolia. Agric For Meteorol 148(10):1456–1466. doi: 10.1016/j.agrformet.2008.04.011 CrossRefGoogle Scholar
  33. Qi J, Ma W, Song CX (2008) Influence of freeze–thaw on engineering properties of a silty soil. Cold Reg Sci Technol 53(3):397–404. doi: 10.1016/j.coldregions.2007.05.010 CrossRefGoogle Scholar
  34. Rana G, Katerji N, Lorenzi F (2005) Measurement and modelling of evapotranspiration of irrigated citrus orchard under Mediterranean conditions. Agric For Meteorol 128(3–4):199–209. doi: 10.1016/j.agrformet.2004.11.001 CrossRefGoogle Scholar
  35. Raupach MR, Lu H (2004) Representation of land-surface processes in aeolian transport models. Environ Model Softw 19(2):93–112. doi: 10.1016/S1364-8152(03)00113-0 CrossRefGoogle Scholar
  36. Salomonsona VV, Appel I (2004) Estimating fractional snow cover from MODIS using the normalized difference snow index. Remote Sens Environ 89(3):351–360. doi: 10.1016/j.rse.2003.10.016 CrossRefGoogle Scholar
  37. Shao YH, Jung E, Leslie LM (2002) Numerical prediction of northeast Asian dust storms using an integrated wind erosion modeling system. J Geophys Res Atmos 107(24):35–43. doi: 10.1029/2001JD001493 Google Scholar
  38. Sharratt BS, Edgar R (2011) Implications of changing PM10 air quality standards on Pacific Northwest communities affected by windblown dust. Atmos Environ 45(27):4533–4814. doi: 10.1016/j.atmosenv.2011.05.059 CrossRefGoogle Scholar
  39. Shi TG, Sun XH, Yan YC (2003) Study on the seasonal wind–sand land in the Northwest Region of Shandong Province based on remote sensing. Areal Res Develop 22(5):43–45 (In Chinese) Google Scholar
  40. Steffens M, Kölbl A, Totsche KU et al (2008) Grazing effects on soil chemical and physical properties in a semiarid steppe of Inner Mongolia (PR China). Geoderma 143(1–2):63–72. doi: 10.1016/j.geoderma.2007.09.004 CrossRefGoogle Scholar
  41. Stow DA, Hope A, MacGuire D et al (2004) Remote sensing of vegetation and land-cover change in Arctic Tundra Ecosystems. Remote Sens Environ 89(3):281–308. doi: 10.1016/j.rse.2003.10.018 CrossRefGoogle Scholar
  42. Thorne ME, Young FI, Pan WI et al (2003) No-till spring cereal cropping systems reduce wind erosion susceptibility in the wheat-fallow region of the Pacific Northwest. J Soil Water Conserv 58(5):251–257 (In Chinese) Google Scholar
  43. Vaezi AR, Sadeghi SRH, Bahami HA et al (2008) Modeling the USLE K factor for calcareous soils in northwest Iran. Geomorphology 97(3–4):414–423. doi: 10.1016/j.geomorph.2007.08.017 CrossRefGoogle Scholar
  44. Verheijen FGA, Jones RJA, Rickson RJ et al (2009) Tolerable versus actual soil erosion rates in Europe. Earth Sci Rev 94(1–4):23–38. doi: 10.1016/j.earscirev.2009.02.003 CrossRefGoogle Scholar
  45. Wagner LE (2013) A history of wind erosion prediction models in the United States Department of Agriculture: the wind erosion prediction system (WEPS). Aeolia Res 10:9–24. doi: 10.1016/j.aeolia.2012.10.001 CrossRefGoogle Scholar
  46. Wang T (2000) Land use and sandy desertification in the North China. J Des Res 20(2):103–107 (In Chinese) Google Scholar
  47. Webb NP, McGowan HA, Phinn SR et al (2009) A model to predict land susceptibility to wind erosion in western Queensland, Australia. Environ Model Softw 24(2):214–227. doi: 10.1016/j.envsoft.2008.06.006 CrossRefGoogle Scholar
  48. Wei ZG, Huang RH, Chen W et al (2002) Spatial distributions and interdecadal variations of the snow at the Tibetan Plateau weather stations. Chin J Atmos Sci 26(4):496–508 (In Chinese) Google Scholar
  49. Zhang CL, Gong JR, Zou XY et al (2003) Estimates of soil movement in a study area in Gonghe Basin, Northeast of Qinghai–Tibet Plateau. J Arid Environ 53(3):283–285. doi: 10.1006/jare.2002.1048 CrossRefGoogle Scholar
  50. Zhang HB, Luo YM, Zhao QG et al (2006) Hong Kong soil researches integrated evaluation of soil fertility quality based on the improved analytic hierarchy process. Acta Pedol Sin 43(4):577–583 (In Chinese) Google Scholar
  51. Zhang KL, Shu AP, Xu XL et al (2008) Soil erodibility and its estimation for agricultural soils in China. J Arid Environ 72(6):1002–1011. doi: 10.1016/j.jaridenv.2007.11.018 CrossRefGoogle Scholar
  52. Zhang ZD, Wieland R, Reiche M et al (2012) Identifying sensitive areas to wind erosion in the Xilingele grassland by computational fluid dynamics modeling. Ecol Inform 8:37–47. doi: 10.1016/j.ecoinf.2011.12.002 CrossRefGoogle Scholar
  53. Zhao XG, Shi H (2003) Prescription of soil anti-erosion capability under water erosion. Arid Land Geogr 26(1):12–16 (In Chinese) Google Scholar
  54. Zhao HL, Zhou RL, Zhang TH et al (2006) Effects of desertification on soil and crop growth properties in Horqin sandy cropland of Inner Mongolia, north China. Soil Tillage Res 87(2):175–185. doi: 10.1016/j.still.2005.03.009 CrossRefGoogle Scholar
  55. Zhou PH, Wu CL (1993) The research method of soil anti-scouribility experiment on the Loess Plateau. J Soil Water Conserv 7(1):29–34 (In Chinese) Google Scholar
  56. Zobeck TM (1991) Soil properties affecting wind erosion. J Soil Water Conserv 46(2):112–118Google Scholar
  57. Zobeck TM, Parker NC, Haskell S et al (2000) Scaling up from field to region for wind erosion prediction using a field-scale wind erosion model and GIS. Agric Ecosyst Environ 82(1–3):247–259. doi: 10.1016/S0167-8809(00)00229-2 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Yi Zhou
    • 1
  • Bing Guo
    • 1
    • 2
  • Shixin Wang
    • 1
  • Heping Tao
    • 3
  • Wenliang Liu
    • 1
  • Guang Yang
    • 1
    • 2
  • Jinfeng Zhu
    • 1
  1. 1.Institute of Remote Sensing and Digital EarthChinese Academy of ScienceBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Institute of Mountain Hazards and EnvironmentChinese Academy of SciencesChengduChina

Personalised recommendations