Skip to main content

Advertisement

Log in

Landslide susceptibility modeling assisted by Persistent Scatterers Interferometry (PSI): an example from the northwestern coast of Malta

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Persistent Scatterers Interferometry (PSI) techniques are widely employed in geosciences to detect and monitor landslides with high accuracy over large areas, but they also suffer from physical and technological constraints that restrict their field of application. These limitations prevent us from collecting information from several critical areas within the investigated region. In this paper, we present a novel approach that exploits the results of PSI analysis for the implementation of a statistical model for landslide susceptibility. The attempt is to identify active mass movements by means of PSI and to avoid, as input data, time-/cost-consuming and seldom updated landslide inventories. The study has been performed along the northwestern coast of Malta (central Mediterranean Sea), where the peculiar geological and geomorphological settings favor the occurrence of a series of extensive slow-moving landslides. Most of these consist in rock spreads, evolving into block slides, with large limestone blocks characterized by scarce vegetation and proper inclination, which represent suitable natural radar reflectors for applying PSI. Based on geomorphometric analyses and geomorphological investigations, a series of landslide predisposing factors were selected and a susceptibility map created. The result was validated by means of cross-validation technique, field surveys and global navigation satellite system in situ monitoring activities. The final outcome shows a good reliability and could represent an adequate response to the increasing demand for effective and low-cost tools for landslide susceptibility assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Agterberg FP, Cheng Q (2002) Conditional independence test for weights-of-evidence modelling. Nat Resour Res 11(4):249–255

    Article  Google Scholar 

  • Alexander D (1988) A review of the physical geography of Malta and its significance for tectonic geomorphology. Quat Sci Rev 7(1):41–53

    Article  Google Scholar 

  • Bonham-Carter GF (1994) Geographic information systems for geoscientists: modelling with GIS. Pergamon, Ontario

    Google Scholar 

  • Bonham-Carter GF, Agterberg FP, Wright DF (1989) Weights of evidence modelling: a new approach to mapping mineral potential. In: Agterberg FP, Bonham-Carter GF (eds) Statistical applications in the Earth Sciences: Geological Survey of Canada, 89(9), 171–183

  • Cardinali M, Reichenbach P, Guzzetti F, Ardizzone F, Antonini G, Galli M et al (2002) A geomorphological approach to the estimation of landslide hazards and risks in Umbria, Central Italy. Nat Hazards Earth Syst Sci 2(1/2):57–72

    Article  Google Scholar 

  • Cascini L (2008) Applicability of landslide susceptibility and hazard zoning at different scales. Eng Geol 102(3):164–177

    Article  Google Scholar 

  • Castellanos Abella EA, van Westen CJ (2008) Qualitative landslide susceptibility assessment by multicriteria analysis: a case study from San Antonio del Sur, Guantánamo, Cuba. Geomorphology 94(3):453–466

    Article  Google Scholar 

  • Chung CJF, Fabbri AG (2003) Validation of spatial prediction models for landslide hazard mapping. Nat Hazards 30(3):451–472

    Article  Google Scholar 

  • Cigna F, Bianchini S, Casagli N (2013) How to assess landslide activity and intensity with Persistent Scatterer Interferometry (PSI): the PSI-based matrix approach. Landslides 10(3):267–283

    Article  Google Scholar 

  • Civile D, Lodolo E, Accettella D, Geletti R, Ben-Avraham Z, Deponte M et al (2010) The Pantelleria graben (Sicily Channel, Central Mediterranean): an example of intraplate ‘passive’rift. Tectonophysics 490(3):173–183

    Article  Google Scholar 

  • Colesanti C, Ferretti A, Novali F, Prati C, Rocca F (2003) SAR monitoring of progressive and seasonal ground deformation using the permanent scatterers technique. Geosci Remote Sens Soc IEEE Trans 41(7):1685–1701

    Article  Google Scholar 

  • Costantini M, Falco S, Malvarosa F, Minati F (2008) A new method for identification and analysis of persistent scatterers in series of SAR images. In: International Geoscience and Remote Sensing Symposium, 2008. IGARSS 2008. IEEE International (vol 2, pp. II–449). IEEE

  • Costanzo D, Rotigliano E, Irigaray C, Jiménez-Perálvarez JD, Chacón J (2012) Factors selection in landslide susceptibility modelling on large scale following the gis matrix method: application to the river Beiro basin (Spain). Nat Hazards Earth Syst Sci 12:327–340

    Article  Google Scholar 

  • Cruden DM, Varnes DJ (1996) Landslides investigation and mitigation, transportation research board. In: Turner AK, Schuster RL (eds) Landslide types and process, National Research Council, National Academy Press, Special Report, 247, 36–75

  • Cyffka B, Bock M (2008) Degradation of field terraces in the Maltese Islands—reasons, processes, and effects. Geogr Fis Din Quat 31(2):119–128

    Google Scholar 

  • Dart CJ, Bosence DWJ, McClay KR (1993) Stratigraphy and structure of the Maltese graben system. J Geol Soc 150(6):1153–1166

    Article  Google Scholar 

  • Devoto S, Biolchi S, Bruschi VM, Furlani S, Mantovani M, Piacentini D et al (2012) Geomorphological map of the NW Coast of the Island of Malta (Mediterranean Sea). J Maps 8(1):33–40

    Article  Google Scholar 

  • Devoto S, Biolchi S, Bruschi VM, Díez AG, Mantovani M, Pasuto A et al (2013) Landslides along the north-west coast of the Island of Malta. In: Margottini C et al (eds) Landslide science and practice, vol 1. Springer, Berlin Heidelberg, pp 57–63

    Chapter  Google Scholar 

  • Dykes AP (2002) Mass movements and conservation management in Malta. J Environ Manag 66(1):77–89

    Article  Google Scholar 

  • Ferretti A, Prati C, Rocca F (2001) Permanent scatterers in SAR interferometry. Geosci Remote Sens IEEE Trans 39(1):8–20

    Article  Google Scholar 

  • Galve JP, Cevasco A, Brandolini P, Soldati M (2015) Assessment of shallow landslide risk mitigation measures based on land use planning through probabilistic modelling. Landslides 12(1):101–114

    Article  Google Scholar 

  • Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 31(1):181–216

    Article  Google Scholar 

  • Guzzetti F, Reichenbach P, Ardizzone F, Cardinali M, Galli M (2006) Estimating the quality of landslide susceptibility models. Geomorphology 81(1):166–184

    Article  Google Scholar 

  • Illies JH (1981) Graben formation—the Maltese Islands—a case history. Tectonophysics 73(1):151–168

    Article  Google Scholar 

  • Jenks GF (1967) The data model concept in statistical mapping. Int Yearb Cartogr 7(1):186–190

    Google Scholar 

  • Jenness J, Brost B, Beier P (2011) Land facet corridor designer: extension for ArcGIS. Jenness Enterprises, Flagstaff

    Google Scholar 

  • Jongsma D, van Hinte JE, Woodside JM (1985) Geologic structure and neotectonics of the North African continental margin south of Sicily. Mar Pet Geol 2(2):156–179

    Article  Google Scholar 

  • Lan HX, Zhou CH, Wang LJ, Zhang HY, Li RH (2004) Landslide hazard spatial analysis and prediction using GIS in the Xiaojiang watershed, Yunnan, China. Eng Geol 76(1):109–128

    Article  Google Scholar 

  • Leopold P, Heiss G, Petschko H, Bell R, Glade T (2013) Susceptibility maps for landslides using different modelling approaches. In: Margottini C et al (eds) Landslide science and practice, vol 1. Springer, Berlin Heidelberg, pp 353–356

    Chapter  Google Scholar 

  • Lu P, Catani F, Tofani V, Casagli N (2014) Quantitative hazard and risk assessment for slow-moving landslides from Persistent Scatterer Interferometry. Landslides 11(4):685–696

    Article  Google Scholar 

  • Magri O, Mantovani M, Pasuto A, Soldati M (2008) Geomorphological investigation and monitoring of lateral spreading along the north-west coast of Malta. Geogr Fis Din Quat 31(2):171–180

    Google Scholar 

  • Mantovani M, Devoto S, Forte E, Mocnik A, Pasuto A, Piacentini D et al (2013) A multidisciplinary approach for rock spreading and block sliding investigation in the north-western coast of Malta. Landslides 10(5):611–622

    Article  Google Scholar 

  • Martino S, Mazzanti P (2014) Integrating geomechanical surveys and remote sensing for sea cliff slope stability analysis: the Mt. Pucci case study (Italy). Nat Hazards Earth Syst Sci 14:831–848

    Article  Google Scholar 

  • Neuhäuser B, Damm B, Terhorst B (2012) GIS-based assessment of landslide susceptibility on the base of the weights-of-evidence model. Landslides 9(4):511–528

    Article  Google Scholar 

  • Oliveira SC, Zêzere J, Catalão J, Nico G (2014) The contribution of PSInSAR interferometry to landslide hazard in weak rock-dominated areas. Landslides. doi:10.1007/s10346-014-0522-9

    Google Scholar 

  • Pasuto A, Soldati M (2013) Lateral spreading. In: Shroder JF, Marston RA, Stoffel M (eds) Treatise on geomorphology, vol 7. Mountain and Hillslope geomorphologyAcademic Press, San Diego, pp 239–248

    Chapter  Google Scholar 

  • Pedley M, Clarke MH (2002) Limestone Isles in a Crystal Sea: the geology of the Maltese Islands. Publishers Enterprises Group, San Gwann

    Google Scholar 

  • Pereira S, Zêzere JL, Bateira C (2012) Technical note: assessing predictive capacity and conditional independence of landslide predisposing factors for shallow landslide susceptibility models. Nat Hazards Earth Syst Sci 12:979–988

    Article  Google Scholar 

  • Piacentini D, Troiani F, Soldati M, Notarnicola C, Savelli D, Schneiderbauer S et al (2012) Statistical analysis for assessing shallow-landslide susceptibility in South Tyrol (south-eastern Alps, Italy). Geomorphology 151:196–206

    Article  Google Scholar 

  • Raucoules D, Colesanti C, Carnec C (2007) Use of SAR interferometry for detecting and assessing ground subsidence. Comptes Rendus Geosci 339(5):289–302

    Article  Google Scholar 

  • Regmi NR, Giardino JR, Vitek JD (2010) Modeling susceptibility to landslides using the weight of evidence approach: Western Colorado, USA. Geomorphology 115(1):172–187

    Article  Google Scholar 

  • Righini G, Pancioli V, Casagli N (2012) Updating landslide inventory maps using Persistent Scatterer Interferometry (PSI). Int J Remote Sens 33(7):2068–2096

    Article  Google Scholar 

  • Sawatzky DL, Raines GL, Bonham-Carter GF, Looney CG (2009) Spatial Data Modeller (SDM): ArcMAP 9.3 geoprocessing tools for spatial data modelling using weights of evidence, logistic regression, fuzzy logic and neural networks and neural networks. http://arcscripts.esri.com/details.asp?dbid=15341. Accessed 24 June 2014

  • Soldati M, Maquaire O, Zezere JL, Piacentini D, Lissak C (2011) Coastline at risk: methods for multi-hazard assessment. J Coast Res Spec Issue 61:335–339

    Article  Google Scholar 

  • Tagil S, Jenness J (2008) GIS-based automated landform classification and topographic, landcover and geological attributes of landforms around the Yazoren Polje, Turkey. J Appl Sci 8(6):910–921

    Article  Google Scholar 

  • van Westen CJ, Castellanos E, Kuriakose SL (2008) Spatial data for landslide susceptibility, hazard, and vulnerability assessment: an overview. Eng Geol 102(3):112–131

    Article  Google Scholar 

  • Vorpahl P, Elsenbeer H, Märker M, Schröder B (2012) How can statistical models help to determine driving factors of landslides? Ecol Model 239:27–39

    Article  Google Scholar 

  • Werner C, Wegmuller U, Strozzi T, Wiesmann A (2003) Interferometric point target analysis for deformation mapping. In: International Geoscience and Remote Sensing Symposium, 2003. IGARSS’03. Proceedings. 2003 IEEE International (vol. 7, pp. 4362–4364). IEEE

  • Xu C, Xu X, Lee YH, Tan X, Yu G, Dai F (2012) The 2010 Yushu earthquake triggered landslide hazard mapping using GIS and weight of evidence modelling. Environ Earth Sci 66(6):1603–1616

    Article  Google Scholar 

  • Xu C, Xu X, Yao Q, Wang Y (2013) GIS-based bivariate statistical modelling for earthquake-triggered landslides susceptibility mapping related to the 2008 Wenchuan earthquake, China. Q J Eng Geol Hydrogeol 46:221–236

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge European Space Agency for providing ERS and ENVISAT radar images (C1P.7044) and AquaBioTech Group for sharing LiDAR data. The LiDAR survey (HYPERLINK “http://www.airbornehydro.com/hawkeyeii”) was carried on HawkEye II of the Airborne Hydrography AB company. SAR processing was performed using Gamma software. The research is part of the project “Coupling terrestrial and marine datasets for coastal hazard assessment and risk reduction in changing environments” funded by the EUR-OPA Major Hazards Agreement of the Council of Europe (responsible M. Soldati). We thank the two anonymous reviewers for their significant comments that helped improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Mantovani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piacentini, D., Devoto, S., Mantovani, M. et al. Landslide susceptibility modeling assisted by Persistent Scatterers Interferometry (PSI): an example from the northwestern coast of Malta. Nat Hazards 78, 681–697 (2015). https://doi.org/10.1007/s11069-015-1740-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-015-1740-8

Keywords

Navigation