Natural Hazards

, Volume 77, Issue 3, pp 1939–1961 | Cite as

A methodology to derive precise landslide displacement time series from continuous GPS observations in tectonically active and cold regions: a case study in Alaska

  • Guoquan Wang
  • Yan Bao
  • Yanet Cuddus
  • Xueyi Jia
  • John SernaJr.
  • Qi Jing
Original Paper


Over the past 15 years, Global Positioning System (GPS) technology has been frequently used as a tool to detect potential earth mass movements and to track creeping landslides. In this study, we investigated 4 years of continuous GPS data (September 2006–July 2010) recorded at a landslide site in Alaska. This GPS station (AC55) was installed on an un-identified creeping site by the Plate Boundary Observatory (PBO) project, which was funded by the US National Science Foundation. The landslide moves with a steady horizontal velocity of 5.5 cm/year toward NEE 15° and experiences a steady subsidence of 2.6 cm/year. There is a considerable correlation between annual snow loading and melting cycles and seasonal variations in the landslide displacements. The seasonal movements vary year to year with an average peak-to-trough amplitude of 1.5 and 1.0 cm in vertical and horizontal directions, respectively. This study addresses three challenging issues in applying GPS for landslide monitoring in tectonically active and cold regions. The three challenges include (1) detecting GPS-derived positions that could be contaminated by the snow and ice accumulated on GPS antennas during cold seasons, (2) establishing a stable local reference frame and assessing its accuracy, and (3) excluding local seasonal ground motions from GPS-derived landslide displacement time series. The methods introduced in this study will be useful for GPS landslide monitoring in other tectonically active and/or cold regions.


Cold region GPS Landslide Monitoring Seasonal ground movement Tectonically active region 



This study was supported by an NSF CAREER award EAR-1229278, an NSF MRI award EAR-1242383, and an NSF TUES award DUE-1243582. The first author acknowledges Professor Kristine Larson for sharing her Fortran subroutines for extracting SNR data from RINEX files. This study benefited from public available continuous GPS data archived at UNAVCO. The authors appreciate UNAVCO engineers Mr. Chris Walls and Mr. Max Enders for providing photographs and site information of PBO GPS stations investigated in this study.


  1. Abolmasov B, Milenković S, Jelisavac B, Pejić M, Radić Z (2015) The analysis of landslide dynamics based on automated GNSS monitoring—a case study. In: Lollino G et al (eds) Engineering geology for society and territory, vol 2. Springer International Publishing Switzerland, pp 143–146Google Scholar
  2. Akbar TA, Ha SR (2011) Landslide hazard zoning along Himalayan Kaghan Valley of Pakistan—by integration of GPS, GIS, and remote sensing technology. Landslides 8:527–540. doi: 10.1007/s10346-011-0260-1 CrossRefGoogle Scholar
  3. Bar-Sever YE, Kroger PM, Borjesson JA (1998) Estimating horizontal gradients of tropospheric path delay with a single GPS receiver. J Geophys Res 103(B3):5019–5035. doi: 10.1029/97JB03534 CrossRefGoogle Scholar
  4. Bellone T, Dabove P, Manzino AM, Taglioretti C (2014) Real-time monitoring for fast deformations using GNSS low-cost receivers. Geomat Nat Hazards Risk. doi: 10.1080/19475705.2014.966867 Google Scholar
  5. Bertiger W, Desai SD, Haines B, Harvey N, Moore AW, Owen S, Weiss JP (2010) Single receiver phase ambiguity resolution with GPS data. J Geodesy 84:327–337. doi: 10.1007/s00190-010-0371-9 CrossRefGoogle Scholar
  6. Bevis M, Alsdorf D, Kendrick E, Fortes LP, Forsberg B, Smalley R Jr, Becker J (2005) Seasonal fluctuations in the mass of the Amazon River system and Earth’s elastic response. Geophys Res Lett 32:L16308. doi: 10.1029/2005GL023491 CrossRefGoogle Scholar
  7. Bilich A, Larson KM (2007) Mapping the GPS multipath environment using the signal-to-noise ratio (SNR). Radio Sci 42:RS6003. doi: 10.1029/2007RS003652 CrossRefGoogle Scholar
  8. Blewitt G (1989) Carrier phase ambiguity resolution for the Global Positioning System applied to geodetic baselines up to 2000 km. J Geophys Res 94(B8):10187–10203CrossRefGoogle Scholar
  9. Blewitt G, Heflin MB, Webb FH, Lindqwister UJ, Malla RP (1992) Global Coordinates with centimeter accuracy in the International Terrestrial Reference frame using GPS. Geophys Res Lett 19(9):853–856CrossRefGoogle Scholar
  10. Blewitt G, Lavallee D D, Clarke P, Nurutdinov K (2001) A new global mode of Earth deformation: seasonal cycle detected. Science 294:2342–2345. doi: 10.1126/science.1065328 CrossRefGoogle Scholar
  11. Boehm J, Niell A, Tregoning P, Schuh H (2006) Global mapping function (GMF): a new empirical mapping function based on numerical weather model data. Geophys Res Lett 33:L07304. doi: 10.1029/2005GL025546 CrossRefGoogle Scholar
  12. Bruckl E, Brunner FK, Kraus K (2006) Kinematics of a deep-seated landslide derived from photogrammetric, GPS and geophysical data. Eng Geol 88:149–159CrossRefGoogle Scholar
  13. Chen G, Herring TH (1997) Effects of atmospheric azimuthal asymmetry on the analysis of space geodetic data. J Geophys Res 102:20489–20502CrossRefGoogle Scholar
  14. Coe JA, Ellis WL, Godt JW, Savage WZ, Savage JE, Michael JA, Kibler JD, Powers PS, Lidke DJ, Debray S (2003) Seasonal movement of the Slumgullion landslide determined from Global Positioning System surveys and field instrumentation, July 1998–March 2002. Eng Geol 68(1–2):67–101CrossRefGoogle Scholar
  15. Cohen SC, Freymueller JT (1997) Deformation of the Kenai Peninsula, Alaska. J Geophys Res 102:20479–20487CrossRefGoogle Scholar
  16. Cohen SC, Freymueller JT (2004) Crustal deformation in Southcentral Alaska: The 1964 Prince William Sound earthquake subduction zone. Adv Geophys 47:1–63Google Scholar
  17. Dach R, Hugentobler U, Fridez P, Meindl M (2007) Bernese GPS software version 5.0. Astronomical Institute, University of Bern, BernGoogle Scholar
  18. Dong D, Bock Y (1989) Global Positioning System network analysis with phase ambiguity resolution applied to crustal deformation studies in California. J Geophys Res 94(B4):3949–3966. doi: 10.1029/JB094iB04p03949 CrossRefGoogle Scholar
  19. Dong D, Dickey JO, Chao Y, Cheng MK (1997) Geocenter variations caused by atmosphere, ocean, and surface ground water. Geophys Res Lett 24:1867–1870CrossRefGoogle Scholar
  20. Dong D, Fang P, Bock Y, Cheng MK, Miyazaki S (2002) Anatomy of apparent seasonal variations from GPS-derived site position time series. J Geophys Res 107(B4):2075. doi: 10.1029/2001JB000573 CrossRefGoogle Scholar
  21. Dow JM, Neilan RE, Rizos C (2009) The International GNSS Service in a changing landscape of Global Navigation Satellite Systems. J Geodesy 83:191–198CrossRefGoogle Scholar
  22. Eberhart-Phillips D, Haeussler PJ, Freymueller JT, Frankel AD, Rubin CM, Craw P, Greg Anderson NA, Carver GA, Crone AJ, Dawson TE, Fletcher H, Hansen R, Harp EL, Harris RA, Hill DP, Hreinsdóttir S, Jibson RW, Jones LM, Kayen R, Keefer DK, Larsen CF, Moran SC, Personius SF, Plafker G, Sherrod B, Sieh K, Sitar N, Wallace WK (2003) The 2002 Denali fault earthquake, Alaska: a large magnitude, slip-partitioned event. Science 300(5622):1113–1118. doi: 10.1126/science.1082703 CrossRefGoogle Scholar
  23. Eckl MC, Snay RA, Soler T, Cline MW, Mader GL (2001) Accuracy of GPS-derived relative positions as a function of interstation distance and observing-session duration. J Geodesy 75(12):633–640CrossRefGoogle Scholar
  24. Freymueller JT (2009) Seasonal Position variations and regional reference frame realization. In: Drewes H (ed) Geodetic reference frames: IAG symposium Munich, Germany, 9–14 October 2006. Springer, Berlin. Int Assoc Geod Symp 134:191–196. doi: 10.1007/978-3-642-00860-3_30
  25. Freymueller JT, Woodard H, Cohen S, Cross R, Elliott J, Larsen C, Hreinsdottir S, Zweck C (2008) Active deformation processes in Alaska, based on 15 years of GPS measurements. In: Freymueller JT et al (eds) Active tectonics and seismic potential of Alaska. AGU, Washington, DC. Geophys Monogr Ser 179:1–42. doi: 10.1029/179GM02
  26. Fu Y, Freymueller JT (2012) Seasonal and long-term vertical deformation in the Nepal Himalaya constrained by GPS and GRACE measurements. J Geophys Res 117:B03407. doi: 10.1029/2011JB008925 Google Scholar
  27. Geirsson H, Arnadottir T, Volksen C, Jiang W, Sturkell E, Villemin T, Einarsson P, Sigmundsson F, Stefansson R (2006) Current plate movements across the Mid-Atlantic Ridge determined from 5 years of continuous GPS measurements in Iceland. J Geophys Res 111:B09407. doi: 10.1029/2005JB003717 Google Scholar
  28. Gili JA, Corominas J, Rius J (2000) Using Global Positioning System techniques in landslide monitoring. Eng Geol 55(3):167–192CrossRefGoogle Scholar
  29. Gleason S (2010) Towards sea ice remote sensing with space detected GPS signals: demonstration of technical feasibility and initial consistency check using low resolution sea ice information. Remote Sens 2:2017–2039. doi: 10.3390/rs2082017 CrossRefGoogle Scholar
  30. Grant MS, Acton ST, Katzberg SJ (2007) Terrain moisture classification using GPS surface-reflected signals. IEEE Geosci Remote Sens Lett 4:41–45. doi: 10.1109/LGRS.2006.883526 CrossRefGoogle Scholar
  31. Grapenthin R, Sigmundsson F, Geirsson H, Arnadottir T, Pinel V (2006) Icelandic rhythmics: annual modulation of land elevation and plate spreading by snow load. Geophys Res Lett 33:L24305. doi: 10.1029/2006GL028081 CrossRefGoogle Scholar
  32. Gurtner W (1994) RINEX: the receiver-independent exchange format. GPS World 5(7):48–52Google Scholar
  33. Haeussler PJ, Plafker G (1995) Earthquakes in Alaska. US Geological Survey Open-File Report 95-624Google Scholar
  34. Hastaoglu KO, Sanli DU (2011) Monitoring Koyulhisar landslide using rapid static GPS: a strategy to remove biases from vertical velocities. Nat Hazards 58(3):1275–1294CrossRefGoogle Scholar
  35. Heki K (2001) Seasonal modulation of interseismic strain build-up in northeastern Japan driven by snow loads. Science 293(5527):89–92CrossRefGoogle Scholar
  36. Heki K (2003) Snow load and seasonal variation of earthquake occurrence in Japan. Earth Planet Sci Lett 207:159–164CrossRefGoogle Scholar
  37. Herring T, King RW, McCluskey SM (2009) Introduction to GAMIT/GLOBK, release 1035. Massachusetts Institute of Technology, CambridgeGoogle Scholar
  38. Jacobson MD (2010) Inferring snow water equivalent for a snow-covered ground reflector using GPS multipath signals. Remote Sens 2:2426–2441. doi: 10.3390/rs2102426 CrossRefGoogle Scholar
  39. Jaldehag KRT, Johansson JM, Davis JL, Elosegui P (1996) Geodesy using the Swedish permanent GPS network: effects of snow accumulation on estimates of site positions. Geophys Res Lett 23(13):1601–1604. doi: 10.1029/96GL00970 CrossRefGoogle Scholar
  40. Jin S, Komjathy A (2010) GNSS reflectometry and remote sensing: new objectives and results. Adv Space Res 46:111–117. doi: 10.1016/j.asr.2010.01.014 CrossRefGoogle Scholar
  41. Kavak A, Vogel WJ, Xu G (1998) Using GPS to measure ground complex permittivity. Electron Lett 34:254–255CrossRefGoogle Scholar
  42. Kedar S, Hajj GA, Wilson BD, Heflin MB (2003) The effect of the second order GPS ionospheric correction on receiver positions. Geophys Res Lett 30(16):1144–1146CrossRefGoogle Scholar
  43. Komac M, Holley R, Mahapatra P, van der Marel H, Bavec M (2014) Coupling of GPS/GNSS and radar interferometric data for a 3D surface displacement monitoring of landslides. Landslides. doi: 10.1007/s10346-014-0482-0 Google Scholar
  44. Kouba J, Heroux P (2001) GPS precise point positioning using IGS orbit products. GPS Solut 5(2):12–28CrossRefGoogle Scholar
  45. Kouba J, Springer T (2001) New IGS station and satellite clock combination. GPS Solut 4(4):31–36CrossRefGoogle Scholar
  46. Larson KM (2013) A methodology to eliminate snow- and ice-contaminated solutions from GPS coordinate time series. J Geophys Res Solid 118:1–8. doi: 10.1002/jgrb.50307 Google Scholar
  47. Larson KM, Small EE, Gutmann E, Bilich A, Braun J, Zavorotny VU (2008) Use of GPS receivers as a soil moisture network for water cycle studies. Geophys Res Lett 35:L24405. doi: 10.1029/2008GL036013 CrossRefGoogle Scholar
  48. Larson KM, Gutmann E, Zavorotny V, Braun JJ, Williams M, Nievinski FG (2009) Can we measure snow depth with GPS receivers? Geophys Res Lett 36:L17502. doi: 10.1029/2009GL039430 CrossRefGoogle Scholar
  49. Larson KM, Braun JJ, Small EE, Zavorotny V, Gutmann E, Bilich A (2010) GPS multipath and its relation to near-surface soil moisture. IEEE-JSTARS 3(1):91–99. doi: 10.1109/JSTARS.2009.2033612 Google Scholar
  50. Lisowski M, Dzurisin D, Denlinger R, Iwatsubo E (2008) Analysis of GPS-measured deformation associated with the 2004–2006 dome building eruption of Mount St. Helens, Washington. In: Sherrod DR, Scott WE, Stauffer PH (eds) A volcano rekindled: the renewed eruption of Mount St. Helens, 2004–2006. US Geol Surv Prof Pap 1750:301–333Google Scholar
  51. Lyard F, Lefevre F, Letellier T, Francis O (2006) Modelling the global ocean tides: modern insights from FES2004. Ocean Dyn 56(5–6):394–415CrossRefGoogle Scholar
  52. Misra P, Enge P (2006) Global Positioning System: signals, measurements, and performance. Ganga-Jamuna Press, LincolnGoogle Scholar
  53. Niell AE (1996) Global mapping functions for the atmosphere delay at radio wavelengths. J Geophys Res 101:3227–3246CrossRefGoogle Scholar
  54. Pearson C, McCaffrey R, Elliot JL, Snay R (2010) HDTP 3.0: software for copying with the coordinate changes associated with crustal motion. J Surv Eng 136(2):80–90CrossRefGoogle Scholar
  55. Peyret M, Djamour Y, Rizza M, Ritz JF, Hutrez JE, Goudarzi MA, Nankali H, Chery J, Le Dortz K, Uri F (2008) Monitoring of the large slow Kahrod landslide in Alboz mountain range (Iran) by GPS and SAR interferometry. Eng Geol 100(3–4):131–141. doi: 10.1016/j.enggeo.2008.02.013 CrossRefGoogle Scholar
  56. Rivas MB, Maslanik JA, Axelrad P (2010) Bistatic scattering of GPS signals off Arctic sea ice. IEEE Trans Geosci Remote Sens 48:1548–1553. doi: 10.1109/TGRS.2009.2029342 CrossRefGoogle Scholar
  57. Snay RA (1999) Using HTDP software to transform spatial coordinates across time and between reference frames. Surv Land Inf Sci 59(1):15–25Google Scholar
  58. Soler T, Snay RA (2004) Transforming positions and velocities between the International Terrestrial Reference Frame of 2000 and North American Datum of 1983. J Surv Eng 130(2):49–55CrossRefGoogle Scholar
  59. Sousanes PJ (2012) Snowpack monitoring, 2008–2009 annual summary: central Alaska network. Natural Resource Data Series NPS/CAKN/NRDS—2012/253. National Park Service, Fort CollinsGoogle Scholar
  60. Suito H, Freymueller JT (2009) A viscoelastic and afterslip postseismic deformation model for the 1964 Alaska earthquake. J Geophys Res 114:B11404. doi: 10.1029/2008JB005954 CrossRefGoogle Scholar
  61. Tagliavini F, Mantovani M, Marcato G, Pasuto A, Silvano S (2007) Validation of landslide hazard assessment by means of GPS monitoring technique—a case study in the Dolomites (Eastern Alps, Italy). Nat Hazards Earth Syst Sci 7(1):185–193CrossRefGoogle Scholar
  62. Teferle FN, Orliac EJ, Bingley RM (2007) An assessment of Bernese GPS software precise point positioning using IGS final products for global site velocities. GPS Solut 11:205–213. doi: 10.1007/s10291-006-0051-7 CrossRefGoogle Scholar
  63. van Dam TM, Wahr J, Milly PCD, Shmakin AB, Blewitt G, Lavallée D, Larson KM (2001) Crustal displacements due to continental water loading. Geophys Res Lett 28:651–654CrossRefGoogle Scholar
  64. Wang G (2011) GPS Landslide Monitoring: single Base vs. network solutions—a case study based on the Puerto Rico and Virgin Islands permanent GPS network. J Geodetic Sci 1(3):191–203CrossRefGoogle Scholar
  65. Wang G (2012) Kinematics of the Cerca del Cielo, Puerto Rico landslide derived from GPS observations. Landslides 9(1):117–130. doi: 10.1007/s10346-011-0277-5 CrossRefGoogle Scholar
  66. Wang G (2013) Millimeter-accuracy GPS landslide monitoring using precise point positioning with single receiver phase ambiguity resolution: a case study in Puerto Rico. J Geodetic Sci 3(1):22–31CrossRefGoogle Scholar
  67. Wang G, Soler T (2012) OPUS for horizontal subcentimeter-accuracy landslide monitoring: case study in the Puerto Rico and Virgin Islands region. J Surv Eng 133(3):143–153. doi: 10.1061/(ASCE)SU.1943-5428.0000079 CrossRefGoogle Scholar
  68. Wang G, Soler T (2014) Measuring land subsidence using GPS: ellipsoid height vs. orthometric height. J Surv Eng 05014004:1–12. doi: 10.1061/(ASCE)SU.1943-5428.0000137 CrossRefGoogle Scholar
  69. Wang FW, Zhang YM, Huo ZT, Peng XM, Araiba K, Wang GH (2008) Movement of the Shuping landslide in the first four years after the initial impoundment of the Three Gorges Dam Reservoir, China. Landslides 5:321–329CrossRefGoogle Scholar
  70. Wang G, Phillips D, Joyce J, Rivera FO (2011) The integration of TLS and Continuous GPS to study landslide deformation: a case study in Puerto Rico. J Geodetic Sci 1(1):25–34. doi: 10.2478/v10156-010-0004-5 CrossRefGoogle Scholar
  71. Wang G, Blume F, Meertens C, Ibanez P, Schulze M (2012) Performance of high-rate kinematic GPS during strong shaking: observations from shake table tests and the 2010 Chile earthquake (M 8.8). J Geodetic Sci 2(1):1–16. doi: 10.2478/v10156-011-0020-0 CrossRefGoogle Scholar
  72. Wang G, Joyce J, Phillips D, Shrestha R, Carter W (2013a) Delineating and defining the boundaries of an active landslide in the rainforest of Puerto Rico using a combination of airborne and terrestrial LIDAR data. Landslides 10(4):503–513CrossRefGoogle Scholar
  73. Wang G, Yu J, Ortega J, Saenz G, Burrough T, Neill R (2013b) A stable reference frame for ground deformation study in the Houston metropolitan area, Texas. J Geodetic Sci 3(3):188–202. doi: 10.2478/jogs-2013-0021 CrossRefGoogle Scholar
  74. Wang G, Kearns TJ, Yu J, Saenz G (2014) A stable reference frame for landslide monitoring using GPS in the Puerto Rico and Virgin Islands region. Landslides 11(1):119–129. doi: 10.1007/s10346-013-0428-y CrossRefGoogle Scholar
  75. Watson KM, Bock Y, Sandwell DT (2002) Satellite interferometric observations of displacements associated with seasonal groundwater in the Los Angeles Basin. J Geophys Res 107(B4):2074. doi: 10.1029/2001JB000470 CrossRefGoogle Scholar
  76. Webb FH, Zumberge JF (1997) An introduction to GIPSY/OASIS II. JPL Publication D-11088Google Scholar
  77. Webb FH, Bursik M, Dixon T, Farina F, Marshall G, Stein RS (1995) Inflation of Long Valley Caldera from one year of continuous GPS observations. Geophys Res Lett 22(3):195–198. doi: 10.1029/94GL02968 CrossRefGoogle Scholar
  78. Willis MJ (2008) Technologies to operate year-round remote Global Navigation Satellite System (GNSS) stations in extreme environments. In: Capra A, Dietrich R (eds) Geodetic and geophysical observations in antarctica: an overview in the IPY perspective. Springer, Berlin, pp 11–35CrossRefGoogle Scholar
  79. Willis JB, Haeussler PJ, Bruhn RL, Willis GC (2007) Holocene slip rate for the western segment of the Castle Mountain fault, Alaska. Bull Seismol Soc Am 97(3):1019–1024CrossRefGoogle Scholar
  80. Yin Y, Zheng W, Liu Y, Zhang J, Li X (2010a) Integration of GPS with InSAR to monitoring of the Jiaju landslide in Sichuan, China. Landslides 7:359–365. doi: 10.1007/s10346-010-0225-9 CrossRefGoogle Scholar
  81. Yin Y, Wang H, Gao Y, Li X (2010b) Real-time monitoring and early warning of landslides at relocated Wushan Town, the Three Gorges Reservoir, China. Landslides 7:339–349. doi: 10.1007/s10346-010-0220-1 CrossRefGoogle Scholar
  82. Zumberge JF, Heflin MB, Jefferson DC, Watkins MM, Webb FH (1997) Precise point positioning for the efficient and robust analysis of GPS data from large networks. J Geophys Res 102:5005–5018CrossRefGoogle Scholar
  83. Zweck C, Freymueller JT, Cohen SC (2002) Elastic dislocation modeling of the postseismic response to the 1964 Alaska Earthquake. J Geophys Res 107(B4):2064. doi: 10.1029/2001JB000409 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Guoquan Wang
    • 1
  • Yan Bao
    • 2
  • Yanet Cuddus
    • 1
  • Xueyi Jia
    • 1
  • John SernaJr.
    • 1
  • Qi Jing
    • 3
  1. 1.Department of Earth and Atmospheric Science, National Center for Airborne Laser Mapping (NCALM)University of HoustonHoustonUSA
  2. 2.College of Civil Engineering and ArchitectureBeijing University of TechnologyBeijingChina
  3. 3.First Monitoring CenterChina Earthquake AdministrationTianjinChina

Personalised recommendations