Skip to main content

Advertisement

Log in

A methodology to derive precise landslide displacement time series from continuous GPS observations in tectonically active and cold regions: a case study in Alaska

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Over the past 15 years, Global Positioning System (GPS) technology has been frequently used as a tool to detect potential earth mass movements and to track creeping landslides. In this study, we investigated 4 years of continuous GPS data (September 2006–July 2010) recorded at a landslide site in Alaska. This GPS station (AC55) was installed on an un-identified creeping site by the Plate Boundary Observatory (PBO) project, which was funded by the US National Science Foundation. The landslide moves with a steady horizontal velocity of 5.5 cm/year toward NEE 15° and experiences a steady subsidence of 2.6 cm/year. There is a considerable correlation between annual snow loading and melting cycles and seasonal variations in the landslide displacements. The seasonal movements vary year to year with an average peak-to-trough amplitude of 1.5 and 1.0 cm in vertical and horizontal directions, respectively. This study addresses three challenging issues in applying GPS for landslide monitoring in tectonically active and cold regions. The three challenges include (1) detecting GPS-derived positions that could be contaminated by the snow and ice accumulated on GPS antennas during cold seasons, (2) establishing a stable local reference frame and assessing its accuracy, and (3) excluding local seasonal ground motions from GPS-derived landslide displacement time series. The methods introduced in this study will be useful for GPS landslide monitoring in other tectonically active and/or cold regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abolmasov B, Milenković S, Jelisavac B, Pejić M, Radić Z (2015) The analysis of landslide dynamics based on automated GNSS monitoring—a case study. In: Lollino G et al (eds) Engineering geology for society and territory, vol 2. Springer International Publishing Switzerland, pp 143–146

  • Akbar TA, Ha SR (2011) Landslide hazard zoning along Himalayan Kaghan Valley of Pakistan—by integration of GPS, GIS, and remote sensing technology. Landslides 8:527–540. doi:10.1007/s10346-011-0260-1

    Article  Google Scholar 

  • Bar-Sever YE, Kroger PM, Borjesson JA (1998) Estimating horizontal gradients of tropospheric path delay with a single GPS receiver. J Geophys Res 103(B3):5019–5035. doi:10.1029/97JB03534

    Article  Google Scholar 

  • Bellone T, Dabove P, Manzino AM, Taglioretti C (2014) Real-time monitoring for fast deformations using GNSS low-cost receivers. Geomat Nat Hazards Risk. doi:10.1080/19475705.2014.966867

    Google Scholar 

  • Bertiger W, Desai SD, Haines B, Harvey N, Moore AW, Owen S, Weiss JP (2010) Single receiver phase ambiguity resolution with GPS data. J Geodesy 84:327–337. doi:10.1007/s00190-010-0371-9

    Article  Google Scholar 

  • Bevis M, Alsdorf D, Kendrick E, Fortes LP, Forsberg B, Smalley R Jr, Becker J (2005) Seasonal fluctuations in the mass of the Amazon River system and Earth’s elastic response. Geophys Res Lett 32:L16308. doi:10.1029/2005GL023491

    Article  Google Scholar 

  • Bilich A, Larson KM (2007) Mapping the GPS multipath environment using the signal-to-noise ratio (SNR). Radio Sci 42:RS6003. doi:10.1029/2007RS003652

    Article  Google Scholar 

  • Blewitt G (1989) Carrier phase ambiguity resolution for the Global Positioning System applied to geodetic baselines up to 2000 km. J Geophys Res 94(B8):10187–10203

    Article  Google Scholar 

  • Blewitt G, Heflin MB, Webb FH, Lindqwister UJ, Malla RP (1992) Global Coordinates with centimeter accuracy in the International Terrestrial Reference frame using GPS. Geophys Res Lett 19(9):853–856

    Article  Google Scholar 

  • Blewitt G, Lavallee D D, Clarke P, Nurutdinov K (2001) A new global mode of Earth deformation: seasonal cycle detected. Science 294:2342–2345. doi:10.1126/science.1065328

    Article  Google Scholar 

  • Boehm J, Niell A, Tregoning P, Schuh H (2006) Global mapping function (GMF): a new empirical mapping function based on numerical weather model data. Geophys Res Lett 33:L07304. doi:10.1029/2005GL025546

    Article  Google Scholar 

  • Bruckl E, Brunner FK, Kraus K (2006) Kinematics of a deep-seated landslide derived from photogrammetric, GPS and geophysical data. Eng Geol 88:149–159

    Article  Google Scholar 

  • Chen G, Herring TH (1997) Effects of atmospheric azimuthal asymmetry on the analysis of space geodetic data. J Geophys Res 102:20489–20502

    Article  Google Scholar 

  • Coe JA, Ellis WL, Godt JW, Savage WZ, Savage JE, Michael JA, Kibler JD, Powers PS, Lidke DJ, Debray S (2003) Seasonal movement of the Slumgullion landslide determined from Global Positioning System surveys and field instrumentation, July 1998–March 2002. Eng Geol 68(1–2):67–101

    Article  Google Scholar 

  • Cohen SC, Freymueller JT (1997) Deformation of the Kenai Peninsula, Alaska. J Geophys Res 102:20479–20487

    Article  Google Scholar 

  • Cohen SC, Freymueller JT (2004) Crustal deformation in Southcentral Alaska: The 1964 Prince William Sound earthquake subduction zone. Adv Geophys 47:1–63

    Google Scholar 

  • Dach R, Hugentobler U, Fridez P, Meindl M (2007) Bernese GPS software version 5.0. Astronomical Institute, University of Bern, Bern

    Google Scholar 

  • Dong D, Bock Y (1989) Global Positioning System network analysis with phase ambiguity resolution applied to crustal deformation studies in California. J Geophys Res 94(B4):3949–3966. doi:10.1029/JB094iB04p03949

    Article  Google Scholar 

  • Dong D, Dickey JO, Chao Y, Cheng MK (1997) Geocenter variations caused by atmosphere, ocean, and surface ground water. Geophys Res Lett 24:1867–1870

    Article  Google Scholar 

  • Dong D, Fang P, Bock Y, Cheng MK, Miyazaki S (2002) Anatomy of apparent seasonal variations from GPS-derived site position time series. J Geophys Res 107(B4):2075. doi:10.1029/2001JB000573

    Article  Google Scholar 

  • Dow JM, Neilan RE, Rizos C (2009) The International GNSS Service in a changing landscape of Global Navigation Satellite Systems. J Geodesy 83:191–198

    Article  Google Scholar 

  • Eberhart-Phillips D, Haeussler PJ, Freymueller JT, Frankel AD, Rubin CM, Craw P, Greg Anderson NA, Carver GA, Crone AJ, Dawson TE, Fletcher H, Hansen R, Harp EL, Harris RA, Hill DP, Hreinsdóttir S, Jibson RW, Jones LM, Kayen R, Keefer DK, Larsen CF, Moran SC, Personius SF, Plafker G, Sherrod B, Sieh K, Sitar N, Wallace WK (2003) The 2002 Denali fault earthquake, Alaska: a large magnitude, slip-partitioned event. Science 300(5622):1113–1118. doi:10.1126/science.1082703

    Article  Google Scholar 

  • Eckl MC, Snay RA, Soler T, Cline MW, Mader GL (2001) Accuracy of GPS-derived relative positions as a function of interstation distance and observing-session duration. J Geodesy 75(12):633–640

    Article  Google Scholar 

  • Freymueller JT (2009) Seasonal Position variations and regional reference frame realization. In: Drewes H (ed) Geodetic reference frames: IAG symposium Munich, Germany, 9–14 October 2006. Springer, Berlin. Int Assoc Geod Symp 134:191–196. doi:10.1007/978-3-642-00860-3_30

  • Freymueller JT, Woodard H, Cohen S, Cross R, Elliott J, Larsen C, Hreinsdottir S, Zweck C (2008) Active deformation processes in Alaska, based on 15 years of GPS measurements. In: Freymueller JT et al (eds) Active tectonics and seismic potential of Alaska. AGU, Washington, DC. Geophys Monogr Ser 179:1–42. doi:10.1029/179GM02

  • Fu Y, Freymueller JT (2012) Seasonal and long-term vertical deformation in the Nepal Himalaya constrained by GPS and GRACE measurements. J Geophys Res 117:B03407. doi:10.1029/2011JB008925

    Google Scholar 

  • Geirsson H, Arnadottir T, Volksen C, Jiang W, Sturkell E, Villemin T, Einarsson P, Sigmundsson F, Stefansson R (2006) Current plate movements across the Mid-Atlantic Ridge determined from 5 years of continuous GPS measurements in Iceland. J Geophys Res 111:B09407. doi:10.1029/2005JB003717

    Google Scholar 

  • Gili JA, Corominas J, Rius J (2000) Using Global Positioning System techniques in landslide monitoring. Eng Geol 55(3):167–192

    Article  Google Scholar 

  • Gleason S (2010) Towards sea ice remote sensing with space detected GPS signals: demonstration of technical feasibility and initial consistency check using low resolution sea ice information. Remote Sens 2:2017–2039. doi:10.3390/rs2082017

    Article  Google Scholar 

  • Grant MS, Acton ST, Katzberg SJ (2007) Terrain moisture classification using GPS surface-reflected signals. IEEE Geosci Remote Sens Lett 4:41–45. doi:10.1109/LGRS.2006.883526

    Article  Google Scholar 

  • Grapenthin R, Sigmundsson F, Geirsson H, Arnadottir T, Pinel V (2006) Icelandic rhythmics: annual modulation of land elevation and plate spreading by snow load. Geophys Res Lett 33:L24305. doi:10.1029/2006GL028081

    Article  Google Scholar 

  • Gurtner W (1994) RINEX: the receiver-independent exchange format. GPS World 5(7):48–52

    Google Scholar 

  • Haeussler PJ, Plafker G (1995) Earthquakes in Alaska. US Geological Survey Open-File Report 95-624

  • Hastaoglu KO, Sanli DU (2011) Monitoring Koyulhisar landslide using rapid static GPS: a strategy to remove biases from vertical velocities. Nat Hazards 58(3):1275–1294

    Article  Google Scholar 

  • Heki K (2001) Seasonal modulation of interseismic strain build-up in northeastern Japan driven by snow loads. Science 293(5527):89–92

    Article  Google Scholar 

  • Heki K (2003) Snow load and seasonal variation of earthquake occurrence in Japan. Earth Planet Sci Lett 207:159–164

    Article  Google Scholar 

  • Herring T, King RW, McCluskey SM (2009) Introduction to GAMIT/GLOBK, release 1035. Massachusetts Institute of Technology, Cambridge

    Google Scholar 

  • Jacobson MD (2010) Inferring snow water equivalent for a snow-covered ground reflector using GPS multipath signals. Remote Sens 2:2426–2441. doi:10.3390/rs2102426

    Article  Google Scholar 

  • Jaldehag KRT, Johansson JM, Davis JL, Elosegui P (1996) Geodesy using the Swedish permanent GPS network: effects of snow accumulation on estimates of site positions. Geophys Res Lett 23(13):1601–1604. doi:10.1029/96GL00970

    Article  Google Scholar 

  • Jin S, Komjathy A (2010) GNSS reflectometry and remote sensing: new objectives and results. Adv Space Res 46:111–117. doi:10.1016/j.asr.2010.01.014

    Article  Google Scholar 

  • Kavak A, Vogel WJ, Xu G (1998) Using GPS to measure ground complex permittivity. Electron Lett 34:254–255

    Article  Google Scholar 

  • Kedar S, Hajj GA, Wilson BD, Heflin MB (2003) The effect of the second order GPS ionospheric correction on receiver positions. Geophys Res Lett 30(16):1144–1146

    Article  Google Scholar 

  • Komac M, Holley R, Mahapatra P, van der Marel H, Bavec M (2014) Coupling of GPS/GNSS and radar interferometric data for a 3D surface displacement monitoring of landslides. Landslides. doi:10.1007/s10346-014-0482-0

    Google Scholar 

  • Kouba J, Heroux P (2001) GPS precise point positioning using IGS orbit products. GPS Solut 5(2):12–28

    Article  Google Scholar 

  • Kouba J, Springer T (2001) New IGS station and satellite clock combination. GPS Solut 4(4):31–36

    Article  Google Scholar 

  • Larson KM (2013) A methodology to eliminate snow- and ice-contaminated solutions from GPS coordinate time series. J Geophys Res Solid 118:1–8. doi:10.1002/jgrb.50307

    Google Scholar 

  • Larson KM, Small EE, Gutmann E, Bilich A, Braun J, Zavorotny VU (2008) Use of GPS receivers as a soil moisture network for water cycle studies. Geophys Res Lett 35:L24405. doi:10.1029/2008GL036013

    Article  Google Scholar 

  • Larson KM, Gutmann E, Zavorotny V, Braun JJ, Williams M, Nievinski FG (2009) Can we measure snow depth with GPS receivers? Geophys Res Lett 36:L17502. doi:10.1029/2009GL039430

    Article  Google Scholar 

  • Larson KM, Braun JJ, Small EE, Zavorotny V, Gutmann E, Bilich A (2010) GPS multipath and its relation to near-surface soil moisture. IEEE-JSTARS 3(1):91–99. doi:10.1109/JSTARS.2009.2033612

    Google Scholar 

  • Lisowski M, Dzurisin D, Denlinger R, Iwatsubo E (2008) Analysis of GPS-measured deformation associated with the 2004–2006 dome building eruption of Mount St. Helens, Washington. In: Sherrod DR, Scott WE, Stauffer PH (eds) A volcano rekindled: the renewed eruption of Mount St. Helens, 2004–2006. US Geol Surv Prof Pap 1750:301–333

  • Lyard F, Lefevre F, Letellier T, Francis O (2006) Modelling the global ocean tides: modern insights from FES2004. Ocean Dyn 56(5–6):394–415

    Article  Google Scholar 

  • Misra P, Enge P (2006) Global Positioning System: signals, measurements, and performance. Ganga-Jamuna Press, Lincoln

    Google Scholar 

  • Niell AE (1996) Global mapping functions for the atmosphere delay at radio wavelengths. J Geophys Res 101:3227–3246

    Article  Google Scholar 

  • Pearson C, McCaffrey R, Elliot JL, Snay R (2010) HDTP 3.0: software for copying with the coordinate changes associated with crustal motion. J Surv Eng 136(2):80–90

    Article  Google Scholar 

  • Peyret M, Djamour Y, Rizza M, Ritz JF, Hutrez JE, Goudarzi MA, Nankali H, Chery J, Le Dortz K, Uri F (2008) Monitoring of the large slow Kahrod landslide in Alboz mountain range (Iran) by GPS and SAR interferometry. Eng Geol 100(3–4):131–141. doi:10.1016/j.enggeo.2008.02.013

    Article  Google Scholar 

  • Rivas MB, Maslanik JA, Axelrad P (2010) Bistatic scattering of GPS signals off Arctic sea ice. IEEE Trans Geosci Remote Sens 48:1548–1553. doi:10.1109/TGRS.2009.2029342

    Article  Google Scholar 

  • Snay RA (1999) Using HTDP software to transform spatial coordinates across time and between reference frames. Surv Land Inf Sci 59(1):15–25

    Google Scholar 

  • Soler T, Snay RA (2004) Transforming positions and velocities between the International Terrestrial Reference Frame of 2000 and North American Datum of 1983. J Surv Eng 130(2):49–55

    Article  Google Scholar 

  • Sousanes PJ (2012) Snowpack monitoring, 2008–2009 annual summary: central Alaska network. Natural Resource Data Series NPS/CAKN/NRDS—2012/253. National Park Service, Fort Collins

    Google Scholar 

  • Suito H, Freymueller JT (2009) A viscoelastic and afterslip postseismic deformation model for the 1964 Alaska earthquake. J Geophys Res 114:B11404. doi:10.1029/2008JB005954

    Article  Google Scholar 

  • Tagliavini F, Mantovani M, Marcato G, Pasuto A, Silvano S (2007) Validation of landslide hazard assessment by means of GPS monitoring technique—a case study in the Dolomites (Eastern Alps, Italy). Nat Hazards Earth Syst Sci 7(1):185–193

    Article  Google Scholar 

  • Teferle FN, Orliac EJ, Bingley RM (2007) An assessment of Bernese GPS software precise point positioning using IGS final products for global site velocities. GPS Solut 11:205–213. doi:10.1007/s10291-006-0051-7

    Article  Google Scholar 

  • van Dam TM, Wahr J, Milly PCD, Shmakin AB, Blewitt G, Lavallée D, Larson KM (2001) Crustal displacements due to continental water loading. Geophys Res Lett 28:651–654

    Article  Google Scholar 

  • Wang G (2011) GPS Landslide Monitoring: single Base vs. network solutions—a case study based on the Puerto Rico and Virgin Islands permanent GPS network. J Geodetic Sci 1(3):191–203

    Article  Google Scholar 

  • Wang G (2012) Kinematics of the Cerca del Cielo, Puerto Rico landslide derived from GPS observations. Landslides 9(1):117–130. doi:10.1007/s10346-011-0277-5

    Article  Google Scholar 

  • Wang G (2013) Millimeter-accuracy GPS landslide monitoring using precise point positioning with single receiver phase ambiguity resolution: a case study in Puerto Rico. J Geodetic Sci 3(1):22–31

    Article  Google Scholar 

  • Wang G, Soler T (2012) OPUS for horizontal subcentimeter-accuracy landslide monitoring: case study in the Puerto Rico and Virgin Islands region. J Surv Eng 133(3):143–153. doi:10.1061/(ASCE)SU.1943-5428.0000079

    Article  Google Scholar 

  • Wang G, Soler T (2014) Measuring land subsidence using GPS: ellipsoid height vs. orthometric height. J Surv Eng 05014004:1–12. doi:10.1061/(ASCE)SU.1943-5428.0000137

    Article  Google Scholar 

  • Wang FW, Zhang YM, Huo ZT, Peng XM, Araiba K, Wang GH (2008) Movement of the Shuping landslide in the first four years after the initial impoundment of the Three Gorges Dam Reservoir, China. Landslides 5:321–329

    Article  Google Scholar 

  • Wang G, Phillips D, Joyce J, Rivera FO (2011) The integration of TLS and Continuous GPS to study landslide deformation: a case study in Puerto Rico. J Geodetic Sci 1(1):25–34. doi:10.2478/v10156-010-0004-5

    Article  Google Scholar 

  • Wang G, Blume F, Meertens C, Ibanez P, Schulze M (2012) Performance of high-rate kinematic GPS during strong shaking: observations from shake table tests and the 2010 Chile earthquake (M 8.8). J Geodetic Sci 2(1):1–16. doi:10.2478/v10156-011-0020-0

    Article  Google Scholar 

  • Wang G, Joyce J, Phillips D, Shrestha R, Carter W (2013a) Delineating and defining the boundaries of an active landslide in the rainforest of Puerto Rico using a combination of airborne and terrestrial LIDAR data. Landslides 10(4):503–513

    Article  Google Scholar 

  • Wang G, Yu J, Ortega J, Saenz G, Burrough T, Neill R (2013b) A stable reference frame for ground deformation study in the Houston metropolitan area, Texas. J Geodetic Sci 3(3):188–202. doi:10.2478/jogs-2013-0021

    Article  Google Scholar 

  • Wang G, Kearns TJ, Yu J, Saenz G (2014) A stable reference frame for landslide monitoring using GPS in the Puerto Rico and Virgin Islands region. Landslides 11(1):119–129. doi:10.1007/s10346-013-0428-y

    Article  Google Scholar 

  • Watson KM, Bock Y, Sandwell DT (2002) Satellite interferometric observations of displacements associated with seasonal groundwater in the Los Angeles Basin. J Geophys Res 107(B4):2074. doi:10.1029/2001JB000470

    Article  Google Scholar 

  • Webb FH, Zumberge JF (1997) An introduction to GIPSY/OASIS II. JPL Publication D-11088

  • Webb FH, Bursik M, Dixon T, Farina F, Marshall G, Stein RS (1995) Inflation of Long Valley Caldera from one year of continuous GPS observations. Geophys Res Lett 22(3):195–198. doi:10.1029/94GL02968

    Article  Google Scholar 

  • Willis MJ (2008) Technologies to operate year-round remote Global Navigation Satellite System (GNSS) stations in extreme environments. In: Capra A, Dietrich R (eds) Geodetic and geophysical observations in antarctica: an overview in the IPY perspective. Springer, Berlin, pp 11–35

    Chapter  Google Scholar 

  • Willis JB, Haeussler PJ, Bruhn RL, Willis GC (2007) Holocene slip rate for the western segment of the Castle Mountain fault, Alaska. Bull Seismol Soc Am 97(3):1019–1024

    Article  Google Scholar 

  • Yin Y, Zheng W, Liu Y, Zhang J, Li X (2010a) Integration of GPS with InSAR to monitoring of the Jiaju landslide in Sichuan, China. Landslides 7:359–365. doi:10.1007/s10346-010-0225-9

    Article  Google Scholar 

  • Yin Y, Wang H, Gao Y, Li X (2010b) Real-time monitoring and early warning of landslides at relocated Wushan Town, the Three Gorges Reservoir, China. Landslides 7:339–349. doi:10.1007/s10346-010-0220-1

    Article  Google Scholar 

  • Zumberge JF, Heflin MB, Jefferson DC, Watkins MM, Webb FH (1997) Precise point positioning for the efficient and robust analysis of GPS data from large networks. J Geophys Res 102:5005–5018

    Article  Google Scholar 

  • Zweck C, Freymueller JT, Cohen SC (2002) Elastic dislocation modeling of the postseismic response to the 1964 Alaska Earthquake. J Geophys Res 107(B4):2064. doi:10.1029/2001JB000409

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by an NSF CAREER award EAR-1229278, an NSF MRI award EAR-1242383, and an NSF TUES award DUE-1243582. The first author acknowledges Professor Kristine Larson for sharing her Fortran subroutines for extracting SNR data from RINEX files. This study benefited from public available continuous GPS data archived at UNAVCO. The authors appreciate UNAVCO engineers Mr. Chris Walls and Mr. Max Enders for providing photographs and site information of PBO GPS stations investigated in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoquan Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Bao, Y., Cuddus, Y. et al. A methodology to derive precise landslide displacement time series from continuous GPS observations in tectonically active and cold regions: a case study in Alaska. Nat Hazards 77, 1939–1961 (2015). https://doi.org/10.1007/s11069-015-1684-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-015-1684-z

Keywords

Navigation