Natural Hazards

, Volume 77, Issue 3, pp 1679–1710 | Cite as

The use of a micro-scale index to identify potential death risk areas due to coastal flood surges: lessons from Storm Xynthia on the French Atlantic coast

  • Axel Creach
  • Sophie Pardo
  • Patrice Guillotreau
  • Denis Mercier
Original Paper


Storm Xynthia (February 2010) was responsible for a large sea surge along the French Atlantic coast. It resulted in the flooding of low-lying coastal areas during the night. Urbanized areas were impacted and 41 people died by drowning in their homes. The location and type of construction of the houses in the affected area contributed to the death toll. The fact that the inadequacy of construction with regard to coastal flood hazard could lead to death was one of the most important lessons of the storm. The French government decided to buy back and scrap the most dangerous buildings hit by Xynthia. In order to prevent future deaths by drowning, we have developed a tool (the V.I.E. index) to identify houses where a risk of death due to a coastal flood cannot be excluded. The goal is to propose individual-based solutions for risk mitigation of residential houses. This tool uses a micro-scale-level analysis along with four criteria: (1) the potential water depth per house, (2) the distance between the dike and the house, (3) the architectural typology and (4) the closeness to rescue point. The methodological background and the first results for three towns are presented in this paper. Limitations and further developments are also discussed.


Storm Xynthia Casualties Coastal flooding Vulnerability index Coastal management Risk assessment 



The authors would like to thank the Géopal program, DREAL Poitou-Charente, the Departmental Service of Fire and Rescue of Charente-Maritime, particularly Lieutenant-Colonel Gervais and Julie Dossmann, and Freddy Vinet, Professor at Montpellier University for all the data provided for this work. Thank you also to Annaëlle Bargain and Elie Chevillot-Miot who helped us to collect fieldwork data. The authors thank the anonymous reviewers for painstaking and constructive comments on the first draft of the manuscript and Carol Robins who improve the English text. Last but not least, the support of the COSELMAR scientific project funded by the Regional Council Pays de la Loire is acknowledged as an essential contribution to the achievement of this research. More information about the project at

Conflict of interest

The authors declare that they have no conflict of interest.


  1. André C (2013) Analyse des dommages liés aux submersions marines et évaluation des coûts induits aux habitations à partir de données d’assurance: perspectives apportées par les tempêtes Johanna (2008) et Xynthia (2010). PhD, University of BrestGoogle Scholar
  2. Anziani A (2010) Rapport d’information fait au nom de la mission commune d’information sur les conséquences de la tempête Xynthia (rapport d’étape). Accessed 03 Sept 2014
  3. Barroca B, Bernardara P, Mouchel JM, Hubert G (2006) Indicators for identification of urban flooding vulnerability. Nat Hazards Earth Syst Sci 6(4):553–561. doi: 10.5194/nhess-6-553-2006 CrossRefGoogle Scholar
  4. Bersani C, Dumas P, Rouzeau M, Gérard F, Gondran O, Hélias A, Trepos Y (2010) Tempête Xynthia: retour d’expérience, évaluation et propositions d’action. Accessed 03 Sept 2014
  5. Bertin X, Bruneau N, Breilh JF, Fortunato AB, Karpytchev M (2012) Importance of wave age and resonance in storm surges: the case Xynthia, Bay of Biscay. Ocean Model 42:16–30. doi: 10.1016/j.ocemod.2011.11.001 CrossRefGoogle Scholar
  6. Birkmann J (2006) Measuring vulnerability to natural hazards: towards disaster resilient societies. United Nations Publications, TokyoGoogle Scholar
  7. Breilh JF, Chaumillon E, Bertin X, Gravelle M (2013) Assessment of static flood modeling techniques: application to contrasting marshes flooded during Xynthia (western France). Nat Hazards Earth Syst Sci 13(6):1595–1612. doi: 10.5194/nhess-13-1595-2013 CrossRefGoogle Scholar
  8. Cariolet JM (2010) Use of high water marks and eyewitness accounts to delineate flooded coastal areas: the case of Storm Johanna (10 March 2008) in Brittany, France. Ocean Coast Manag 53(11):679–690. doi: 10.1016/j.ocecoaman.2010.09.002 CrossRefGoogle Scholar
  9. Cazenave A, Le Cozannet G (2013) Sea level rise and its coastal impacts. Earth’s Future 2(2):20. doi: 10.1002/2013EF000188 Google Scholar
  10. CETMEF, CETE Méditerranée, CETE Ouest (2009) Vulnérabilité du territoire National aux risques littoraux: France métropolitaine. Accessed 03 Sept 2014
  11. Chadenas C, Creach A, Mercier D (2013) The impact of storm Xynthia in 2010 on coastal flood prevention policy in France. J Coast Conserv 17(4):1–10. doi: 10.1007/s11852-013-0299-3 Google Scholar
  12. Chauveau E, Chadenas C, Comentale B, Pottier P, Blanløeil A, Feuillet T, Mercier D, Pourinet L, Rollo N, Tillier I, Trouillet B (2011) Xynthia: leçons d’une catastrophe. CyberGeo Eur J Geogr. doi: 10.4000/cybergeo.23763 Google Scholar
  13. Chevillot-Miot E, Creach A, Mercier D (2013) La vulnérabilité du bâti face au risque de submersion marine: premiers essais de quantification sur l’île de Noirmoutier (Vendée). Les Cahiers Nantais 1:5–14Google Scholar
  14. Cooper HM, Fletcher CH, Chen Q, Barbee MM (2013) Sea-level rise vulnerability mapping for adaptation decisions using LiDAR DEMs. Prog Phys Geogr. doi: 10.1177/0309133313496835 Google Scholar
  15. Corbin A (1990) Le Territoire du vide: L’Occident et le désir du rivage, 1750–1840. Flammarion, ParisGoogle Scholar
  16. Cour des Comptes (2012) Les enseignements des inondations de 2010 sur le littoral atlantique (Xynthia) et dans le Var. Accessed 03 Sept 2014
  17. Crone J (2013) Comparing census data with other geographical data. UK Data Service Census Accessed 16 Jan 2015
  18. Cutter SL, Mitchell JT, Scott MS (2000) Revealing the vulnerability of people and places: a case study of Georgetown County, South Carolina. Ann As Am Geogr 90(4):713–737. doi: 10.1111/0004-5608.00219 CrossRefGoogle Scholar
  19. Dall’Osso F, Gonella M, Gabbianelli G, Withycombe G, Dominey-Howes D (2009) Assessing the vulnerability of buildings to tsunami in Sydney. Nat Hazards Earth Syst Sci 9(6):2015–2026. doi: 10.5194/nhess-9-2015-2009 CrossRefGoogle Scholar
  20. De Bruijn KM, Klijn F (2009) Risky places in the Netherlands: a first approximation for floods. J Flood Risk Manag 2(1):58–67. doi: 10.1111/j.1753-318X.2009.01022.x CrossRefGoogle Scholar
  21. Devaux E, Désiré G, Boura C, Lowenbruck J, Bérenger N, Rouxel N, Romain N (2012) La tempête Xynthia du 28 février 2010—Retour d’expérience en Loire-Atlantique et Vendée: Volet hydraulique et ouvrages de protection. Accessed 03 Sept 2014
  22. Di Mauro M, De Bruijn KM (2012) Application and validation of mortality functions to assess the consequences of flooding to people. J Flood Risk Manag 5(2):92–110. doi: 10.1111/j.1753-318X.2011.01131.x CrossRefGoogle Scholar
  23. Di Mauro M, Lumbroso DM (2008) Hydrodynamic and loss of life modelling for the 1953 Canvey Island flood. FLOODrisk 2008. Accessed 16 Jan 2015
  24. Di Mauro M, Bruijn KMD, Meloni M (2012) Quantitative methods for estimating flood fatalities: towards the introduction of loss-of-life estimation in the assessment of flood risk. Nat Hazards 63(2):1083–1113. doi: 10.1007/s11069-012-0207-4 CrossRefGoogle Scholar
  25. Dominey-Howes D, Papathoma M (2007) Validating a tsunami vulnerability assessment model (the PTVA Model) using field data from the 2004 Indian Ocean Tsunami. Nat Hazards 40(1):113–136. doi: 10.1007/s11069-006-0007-9 CrossRefGoogle Scholar
  26. Douvinet J (2011) Les maires face aux plans de prévention du risque inondation (Ppri). Espace Geogr 40(1):31–46Google Scholar
  27. Eleuterio J (2012) Flood risk analysis: impact of uncertainty in hazard modelling and vulnerability assessments on damage estimations. PhD, University of StrasbourgGoogle Scholar
  28. Feuillet T, Chauveau E, Pourinet L (2012) Xynthia est-elle exceptionnelle ? Réflexions sur l’évolution et les temps de retour des tempêtes, des marées de tempête, et des risques de surcotes associés sur la façade atlantique française. Norois 222(1):27–44CrossRefGoogle Scholar
  29. Garnier E, Surville F (2010) La tempête Xynthia face à l’histoire; submersions et tsunamis sur les littoraux français du Moyen Âge à nos jours. Le Croît Vif, SaintesGoogle Scholar
  30. Garnier E, Henry N, Desarthe J (2012) Visions croisées de l’historien et du courtier en réassurance sur les submersions recrudescence de l’aléa ou vulnérabilisation croissante ? In: Przyluqki V, Hallegatte S (eds) Gestion des risques naturels: Leçons de la tempête Xynthia. Quae, Versailles, pp 105–128Google Scholar
  31. Gauraz AL, Valencia N, Koscielny M, Guillande R, Gardi A, Leone F, Salaun T (2009) Tsunami damages assessment: vulnerability functions on buildings based on field and earth observation survey. Accessed 03 Sept 2014
  32. Gerritsen H (2005) What happened in 1953? The big flood in the Netherlands in retrospect. Philos Trans A Math Phys Eng Sci 363(1831):1271–1291. doi: 10.1098/rsta.2005.1568 CrossRefGoogle Scholar
  33. González-Riancho P, Aguirre-Ayerbe I, Garcia-Aguilar O, Medina R, Gonzalez M, Aniel-Quiroga I, Gutiérrez OQ, Álvarez-Gómez JA, Larreynaga J, Gavidia F (2014) Integrated tsunami vulnerability and risk assessment: application to the coastal area of El Salvador. Nat Hazards Earth Syst Sci 14(5):1223–1244. doi: 10.5194/nhess-14-1223-2014 CrossRefGoogle Scholar
  34. IGN, SHOM (2012) Litto3D®—v 1.0: Spécifications techniques. Accessed 13 Jan 2015
  35. INSEE (2011) Résultats du recensement de la population 2011. Accessed 03 Sept 2014
  36. Jonkman SN (2007) Loss of life estimation in flood risk assessment; theory and applications. PhD, Delft University of TechnologyGoogle Scholar
  37. Jonkman SN, Kelman I (2005) An analysis of causes and circumstances of flood disaster deaths. Disasters 29(1):75–97CrossRefGoogle Scholar
  38. Jonkman SN, Vrijling JK, Vrouwenvelder ACWM (2008) Methods for the estimation of loss of life due to floods: a literature review and a proposal for a new method. Nat Hazards 46(3):353–389. doi: 10.1007/s11069-008-9227-5 CrossRefGoogle Scholar
  39. Jonkman SN, Maaskant B, Boyd E, Levitan ML (2009) Loss of life caused by the flooding of New Orleans after hurricane Katrina: analysis of the relationship between flood characteristics and mortality. Risk Anal 29(5):676–698. doi: 10.1111/j.1539-6924.2008.01190.x CrossRefGoogle Scholar
  40. Jousseaume V, Mercier D (2009) Évaluer la vulnérabilité architecturale de l’habitat en zone inondable. L’exemple du Val nantais. In: Becerra S, Peltier A (eds) Risques et environnement: recherches interdisciplinaires sur la vulnérabilité des sociétés. L’Harmattan, Paris, pp 199–214Google Scholar
  41. Jousseaume V, Landrein J, Mercier D (2004) La vulnérabilité des hommes et des habitations face au risque d’inondation dans le Val nantais (1841–2003). Entre législation nationale et pratiques locales. Norois 3(192):29–45CrossRefGoogle Scholar
  42. Kelman I, Spence R (2003) A flood failure flow chart for buildings. Proc ICE Munic Eng 156(3):207–214. doi: 10.1680/muen.2003.156.3.207 CrossRefGoogle Scholar
  43. Khazai B, Kunz-Plapp T, Büscher C, Wegner A (2014) VuWiki: an ontology-based semantic wiki for vulnerability assessments. Int J Disaster Risk Sci 5–1:55–73. doi: 10.1007/s13753-014-0010-9 CrossRefGoogle Scholar
  44. Klugman J, Rodríguez F, Choi HJ (2011) The HDI 2010: new controversies, old critiques. J Econ Inequal 9(2):249–288. doi: 10.1007/s10888-011-9178-z CrossRefGoogle Scholar
  45. Kolen B, Slomp R, Jonkman SN (2013) The impacts of storm Xynthia February 27–28, 2010 in France: lessons for flood risk management. J Flood Risk Manag 6:261–278. doi: 10.1111/jfr3.12011 CrossRefGoogle Scholar
  46. Leone F, Vinet F (2006) La vulnérabilité, un concept fondamental au cœur des méthodes d’évaluation des risques naturels. Géorisques 1:9–25Google Scholar
  47. Leone F, Lavigne F, Paris R, Denain JC, Vinet F (2011) A spatial analysis of the December 26th, 2004 tsunami-induced damages: lessons learned for a better risk assessment integrating buildings vulnerability. Appl Geogr 31:363–375. doi: 10.1016/j.apgeog.2010.07.009 CrossRefGoogle Scholar
  48. Lumbroso DM, Vinet F (2011) A comparison of the causes, effects and aftermaths of the coastal flooding of England in 1953 and France in 2010. Nat Hazards Earth Syst Sci 11(8):2321–2333. doi: 10.5194/nhess-11-2321-2011 CrossRefGoogle Scholar
  49. Magnan A, Duvat V (2014) Des catastrophes “naturelles” ?. Le Pommier, ParisGoogle Scholar
  50. Mercier D, Chadenas C (2012) La tempête Xynthia et la cartographie des «zones noires» sur le littoral français: analyse critique à partir de l’exemple de La Faute-sur-Mer (Vendée). Norois 222(1):45–60CrossRefGoogle Scholar
  51. Meur-Férec C, Deboudt P, Morel V (2008) Coastal risks in France: an integrated method for evaluating vulnerability. J Coast Res 24(sp2):178–189CrossRefGoogle Scholar
  52. Ministère de l’écologie, du développement durable, des transports et du logement (2011) Circulaire du 27 juillet 2011 relative à la prise en compte du risque de submersion marine dans les plans de prévention des risques naturels littoraux. Accessed 03 Sept 2014
  53. Mück M, Taubenböck H, Post J, Wegscheider S, Strunz G, Sumaryono S, Ismail FA (2013) Assessing building vulnerability to earthquake and tsunami hazard using remotely sensed data. Nat Hazards 68:97–114. doi: 10.1007/s11069-012-0481-1 CrossRefGoogle Scholar
  54. Observatoire National de la Mer et du Littoral (2014) Evolution de la construction de logements entre 1990 et 2012 sur le littoral métropolitain. Accessed 16 Jan 2015
  55. Pedreros R, Garcin M, Krien Y, Monfort Climent D, Mugica J, François B (2010) Tempête Xynthia: Compte rendu de mission préliminaire. Accessed 03 Sept 2014
  56. Perret J, Sauzeau T (2014) Xynthia ou la mémoire réveillée. Des villages charentais et vendéens face à l’océan (XVIIIe–XXIe siècles). Geste, La CrècheGoogle Scholar
  57. Pigeon P (2012) Apports de la résilience à la géographie des risques: l’exemple de La Faute-sur-Mer (Vendée, France). VertigO. doi: 10.4000/vertigo.12031 Google Scholar
  58. Pineau-Guillou L (2012) Statistiques des niveaux marins extrêmes des côtes de France (Manche et Atlantique). Accessed 16 Jan 2015
  59. Pitié C, Puech P (2010) Expertise complémentaire des zones de solidarité délimitées en Vendée suite à la tempête Xynthia survenue dans la nuit du 27 au 28 février 2010. Accessed 03 Sept 2014
  60. Pitié C, Bellec P, Maillot H, Nadeau J, Puech P (2011) Expertise des zones de solidarité Xynthia en Charente-Maritime. Accessed 03 Sept 2014
  61. Priest S, Wilson T, Tapsell S, Penning-Rowsell E, Viavattene C, Fernandez-Bilbao A (2007) Building a model to estimate Risk to Life for European flood events. Accessed 16 Jan 2015
  62. Ramsbottom D, Floyd P, Penning-Rowsell E (2003) Flood risks to people: phase 1. Accessed 03 Sept 2014
  63. Reese S, Cousins WJ, Power WL, Palmer NG, Tejakusuma IG, Nugrahadi S (2007) Tsunami vulnerability of buildings and people in South Java: field observations after the July 2006 Java tsunami. Nat Hazards Earth Syst Sci 7:573–589. doi: 10.5194/nhess-7-573-2007 CrossRefGoogle Scholar
  64. Renard J (2005) La Vendée: un demi-siècle d’observation d’un géographe. Presses Universitaires de Rennes, RennesGoogle Scholar
  65. Romieu E, Welle T, Schneiderbauer S, Pelling M, Vinchon C (2010) Vulnerability assessment within climate change and natural hazard contexts: revealing gaps and synergies through coastal applications. Sustain Sci 5(2):159–170. doi: 10.1007/s11625-010-0112-2 CrossRefGoogle Scholar
  66. Rygel L, O’Sullivan D, Yarnal B (2006) A method for constructing a social vulnerability index: an application to hurricane storm surges in a developed country. Mitig Adapt Strateg Glob Change 11–3:741–764. doi: 10.1007/s11027-006-0265-6 CrossRefGoogle Scholar
  67. Sahal A (2011) Le risque tsunami en France: contributions méthodologiques pour une évaluation intégrée par scénarios de risque. PhD, Université Paris 1 Panthéon-SorbonneGoogle Scholar
  68. SHOM (2012) Ouvrage de marée: références altimétriques maritimes: Cote du zéro hydrographique et niveaux caractéristiques de la marée. Accessed 13 Jan 2015
  69. Verger F (2011) Digues et polders littoraux: réflexions après la tempête Xynthia. Physio Géo. doi: 10.4000/physio-geo.1740 Google Scholar
  70. Vinet F, Boissier L, Defossez S (2011) La mortalité comme expression de la vulnérabilité humaine face aux catastrophes naturelles: deux inondations récentes en France (Xynthia, Var, 2010). VertigO. doi: 10.4000/vertigo.11074 Google Scholar
  71. Vinet F, Defossez S, Rey T, Boissier L (2012a) Le processus de production du risque «submersion marine» en zone littorale: l’exemple des territoires «Xynthia». Norois 222(1):11–26Google Scholar
  72. Vinet F, Lumbroso D, Defossez S, Boissier L (2012b) A comparative analysis of the loss of life during two recent floods in France: the sea surge caused by the storm Xynthia and the flash flood in Var. Nat Hazards 613:1179–1201. doi: 10.1007/s11069-011-9975-5 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Axel Creach
    • 1
    • 2
  • Sophie Pardo
    • 2
  • Patrice Guillotreau
    • 2
  • Denis Mercier
    • 1
    • 3
  1. 1.Laboratoire LETG-Nantes Géolittomer, UMR 6554, CNRSUniversité de NantesNantes Cedex 3France
  2. 2.Laboratoire d’Economie et de Management de Nantes-AtlantiqueUniversité de NantesNantes Cedex 3France
  3. 3.Institut Universitaire de FranceParisFrance

Personalised recommendations