Skip to main content
Log in

Characterizing sudden geo-hazards in mountainous areas by D-InSAR with an enhancement of topographic error correction

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Differential interferometric synthetic aperture radar (D-InSAR) has been viewed as a promising technique in monitoring sudden geo-hazards (e.g., earthquake and landslide) in mountainous areas. However, the tough natural settings (e.g., steep slopes and vegetation) pose the D-InSAR technique to face many challenges. Among them, phase residuals induced by inaccurate topographic heights that can result in intolerable error have not been paid adequate attention. We present, in this paper, a new strategy of using D-InSAR measurements to characterize sudden geo-hazards with an emphasis on the correction of topographic errors. In the proposed strategy, a least squares model with an outlier detector is constructed to estimate the topographic errors from multi-baseline wrapped differential interferograms, and the error-prone phase unwrapping procedure is not needed. The new strategy is applied to the ALOS PALSAR images acquired for monitoring a giant mudslide occurred in Zhouqu County, China. After refining the topographic height originally from the inaccurate ASTER GDEM, notable improvements to the D-InSAR measurements can be clearly seen, which is helpful to better interpret the deformation signals associated with the mudslide event. It is observed that the Zhouqu mudslide had caused large ground movements in the Luojiayu and Sanyanyu groove valleys. In addition, we find that the Suoertou landslide has been experiencing moderate ground movements during the geologic event.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amelung F, Yun SH, Walter TR, Segall P, Kim SW (2007) Stress control of deep rift intrusion at Mauna Loa Volcano, Hawaii. Science 316(5827):1026–1030

    Article  Google Scholar 

  • Bawden GW, Thatcher W, Stein RS, Hudnut KW, Peltzer G (2004) Tectonic contraction across Los Angeles after removal of groundwater pumping effects. Nature 412:812–815

    Article  Google Scholar 

  • Bekaert D (2010) InSAR time series analysis of the 2006 slow slip event on the Guerrero Subduction Zone, Mexico. Master thesis, Chapter 6, Delft University of Technology

  • Berardino P, Fornaro G, Lanari R, Sansosti E (2002) A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans Geosci Remote Sens 40(11):2375–2383

    Article  Google Scholar 

  • Bigges J, Wright T, Lu Z, Parson B (2007) Multi-interferogram method for measuring interseismic deformation: Denali fault, Alaska. Geophys J Int 170(3):1165–1179

    Article  Google Scholar 

  • Chapin E, Chan SF, Chapman BD, Chen CW, Martin JM, Michel TR, Muellerschoen RJ, Pi XQ, Rosen PA (2006) Impact of the ionosphere on an L-band space based radar. In Proceedings of 2006 IEEE Conference on Radar, 24–27 April

  • Chen CW, Zebker HA (2002) Phase unwrapping for large SAR interferograms: statistical segmentation and generalized network models. IEEE Trans Geosci Remote Sens 40(8):1709–1719

    Article  Google Scholar 

  • Ding XL, Liu GX, Li ZW, Li ZL, Chen YQ (2004) Ground subsidence monitoring in Hong Kong with satellite SAR interferometry. Photogramm Eng Remote Sens 70(10):1151–1156

    Article  Google Scholar 

  • Ding XL, Li ZW, Zhu JJ, Feng GC, Long JP (2008) Atmospheric effects on InSAR measurements and their mitigation. Sensors 8:5426–5448

    Article  Google Scholar 

  • Ducret G, Doin MP, Grandin R, Lasserre C, Guillaso S (2014) DEM corrections before unwrapping in a small baseline strategy for InSAR time series analysis. IEEE Geosci Remote Sens Lett 11(3):696–700

    Article  Google Scholar 

  • Elliott JR, Walter RJ, England PC, Jackson JA, Li Z, Parsons B (2010) Extension on the Tibetan Plateau: recent normal faulting measured by InSAR and body wave seismology. Geophys J Int 183(2):503–535

    Article  Google Scholar 

  • Ferretti A, Prati C, Rocca F (2001) Permanent scatterers in SAR interferometry. IEEE Trans Geosci Remote Sens 39(1):8–20

    Article  Google Scholar 

  • Furuya M, Satyabala SP (2008) Slow earthquake in Afghanistan detected by InSAR. Geophys Res Lett 35. doi:10.1029/2007GL033049

  • Gabriel AK, Goldstein RM, Zebker HA (1989) Mapping small elevation changes over large areas: differential radar interferometry. J Geophys Res 94(B7):9183–9191

    Article  Google Scholar 

  • Goldstein RM, Werner CL (1998) Radar interferogram filtering for geophysical applications. Geophys Res Lett 25(21):4035–4038

    Article  Google Scholar 

  • Goldstein RM, Zebker HA, Werner CL (1988) Satellite radar interferometry: two-dimensional phase unwrapping. Radio Sci 23(4):713–720

    Article  Google Scholar 

  • Goldstein RM, Engelhardt H, Kamb B, Frolich RM (1993) Satellite radar interferometry for monitoring ice sheet motion: application to an antarctic ice stream. Science 262(5139):1525–1530

    Article  Google Scholar 

  • Hanssen RF (2001) Radar interferometry: data interpretation and error analysis. Kluwer Academic, Dordrecht

    Book  Google Scholar 

  • Hilley GE, Burgmann R, Ferretti A, Novali F, Rocca F (2004) Dynamics of slow-moving landslides from permanent scatterer analysis. Science 304(5679):1952–1955

    Article  Google Scholar 

  • Hooper A, Segall P, Zebker H (2007) Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcan Alcedo Galapagos. J Geophys Res 112(B7). doi:10.1029/2006jb004763

  • Jung H-S, Lee D-T, Lu Z, Won J-S (2013) Ionospheric correction of SAR interferograms by multiple-aperture interferometry. IEEE Trans Geosci Remote Sens 51(5):3191–3199

    Article  Google Scholar 

  • Lauknes TR, Zebker HA, Larsen Y (2011) InSAR deformation time series using an L1-Norm small-baselines approach. IEEE Trans Geosci Remote Sens 49(1):536–546

    Article  Google Scholar 

  • Li B (2012) Study on risk assessment of Suoertou landslide in Zhouqu County, Gansu Province. Master thesis, China University of Geosciences, Beijing (in Chinese)

  • Li ZW, Ding XL, Zheng DW, Huang C (2008) Least squares-based filter for remote sensing image noise reduction. IEEE Trans Geosci Remote Sens 46(7):2044–2049

    Article  Google Scholar 

  • Li ZH, Fielding EJ, Cross P, Preusker R (2009) Advanced InSAR atmospheric correction: MERIS/MODIS combination and stacked water vapour models. Int J Remote Sens 30(13):3343–3363

    Article  Google Scholar 

  • Lin YN, Simons M, Hetland EA, Muse P, DiCaprio C (2010) A multiscale approach to estimating topographically correlated propagation delays in radar interferogram. Geochem Geophys Geosyst 11(9). doi:10.1029/2010GC003228

  • Liu CZ, Miao TB, Chen HQ, Dong KJ, Li ZH, Li HJ (2011) Basic feature and origin of the “8.8” mountain torrent-debris flow disaster happened in Zhouqu Country, Gansu, China, Aug 8, 2010. Geol Bull of China 30(1):141–150 (in Chinese)

    Google Scholar 

  • Massonnet D, Rossi M, Carmona C, Adragna F, Peltzer G, Feigl KL, Rabaute T (1993) The displacement field of the Landers earthquake mapped by radar interferometry. Nature 364:13–142

    Article  Google Scholar 

  • Mukherjee S, Joshi PK, Mukherjee S, Ghosh A, Garg RD, Mukhopadhway A (2013) Evaluation of vertical accuracy of open source digital elevation model (DEM). Int J Appl Earth Obs 21:205–217

    Article  Google Scholar 

  • Sandwell DT, Myer D, Mellors R, Shimada M, Frooks B, Foster J (2008) Accuracy and resolution of ALOS interferometry: vector deformation maps of the father’s day intrusion at Kilauea. IEEE Trans Geosci Remote Sens 46(11):3524–3534

    Article  Google Scholar 

  • Scaioni M (2013) Remote sensing for landslide investigations: from research into practice. Remote Sens 5(11):5488–5492

    Article  Google Scholar 

  • Stevens NF, Wadge G (2004) Towards operational repeat-pass SAR interferometry at active volcanoes. Nat Hazards 33(1):47–76

    Article  Google Scholar 

  • Sun Q, Li ZW, Zhu JJ, Ding XL, Hu J, Xu B (2013) Improved Goldstein filter for InSAR noise reduction based on local SNR. J Cent South Univ 20(7):1896–1903

    Article  Google Scholar 

  • Wegmuller U, Werner C, Strozzi T, Wiesmann A (2006) Ionospheric electron concentration effects on SAR and INSAR. In Proceedings of 2006 IEEE International Geoscience and Remote Sensing Symposium, Denver, USA, pp 3731–3734

  • Wright TJ, Parsons B, England PC, Fielding EJ (2004) InSAR observations of low slip rates on the major faults of western Tibet. Science 305(5681):236–239

    Article  Google Scholar 

  • Xin H (2010) Slew of landslides unmask hidden geological hazards. Science 330(6005):744

    Article  Google Scholar 

  • Zhang CJ (2010) Geological environment and the distribution of geological disasters at the Zhouqu segment in Pai-lung River Basin, China. Gansu Water Conserv Hydrol Technol 46(12):26–28 (in Chinese)

    Google Scholar 

  • Zhang L, Ding XL, Lu Z (2011a) Modeling PSInSAR time series without phase unwrapping. IEEE Trans Geosci Remote Sens 49(1):547–556

    Article  Google Scholar 

  • Zhang L, Ding XL, Lu Z (2011b) Ground settlement monitoring based on temporarily coherent points between two SAR acquisitions. ISPRS J Photogramm Remote Sens 66(1):146–152

    Article  Google Scholar 

  • Zhang L, Lu Z, Ding XL, Jung HS, Feng GC, Lee CW (2012) Mapping ground surface deformation using temporarily coherent point SAR interferometry: application to Los Angeles Basin. Remote Sens Environ 117:429–439

    Article  Google Scholar 

  • Zhao CY, Qu FF, Zhang Q, Zhu W (2012) A combined multi-interferogram algorithm for high resolution DEM reconstruction over deformed regions with TerraSAR-X data. J Geodyn 61:148–153

    Article  Google Scholar 

Download references

Acknowledgments

The ALOS PALSAR data used in the study are copyrighted by Japan Aerospace Exploration Agency (Nos. P1246002 and P1229002). The research is partly supported by FCE starting founds, the Research Grants Council of the Hong Kong Special Administrative Region (Project Nos.: PolyU 152214/14E, 152043/14E, 5381/13E, 5147/13E and 5154/10E) and the National Natural Science Foundation of China (Nos.: 41304011; 41374013; 41404011 and 41222027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Q., Zhang, L., Hu, J. et al. Characterizing sudden geo-hazards in mountainous areas by D-InSAR with an enhancement of topographic error correction. Nat Hazards 75, 2343–2356 (2015). https://doi.org/10.1007/s11069-014-1431-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-014-1431-x

Keywords

Navigation