Skip to main content
Log in

An integrated flood inundation model for coastal urban watershed of Navi Mumbai, India

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Most urban agglomerations located in the Mumbai coastal region in India are vulnerable to flooding due to increasing frequency of the short-duration heavy rainfall, by virtue of their location at foothills on one side and tidal variations on the other side. Steep slopes in the catchment ensure fast runoff and tidal variation adds to backwater effect in the drainage system, which together are favorable for flooding. The present study simulates the flood inundation due to heavy rainfall and high-tide conditions in a coastal urban catchment within Mumbai region with detention pond. Overland flow is modeled using a mass balance approach, which can adapt to hilly slopes and smoothly accommodate detention pond hydraulics. Dynamic wave channel routing based on finite element method captures the backwater effects due to tidal variation, and raster-based flood inundation model enables direct use of digital elevation model. The integrated model is capable of simulating detention pond hydraulics within the raster flood model for heavy rainfall events. The database required for the model is obtained from the geographical information system (GIS) and remote sensing techniques. Application of the integrated model to literature problems and the catchment of the study area for two non-flooding events gave satisfactory results. Further, the model is applied to an extreme rainfall event of July 26, 2005, coinciding with high-tide conditions, which revealed vulnerability of the area to flooding despite of an existing detention pond. A sensitivity analysis on the location of detention pond indicated that catchment response can be better governed by relocating the detention pond to upstream of existing detention pond especially when heavy rainfall events are becoming frequent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

A :

Area of flow in channel

A p :

Area of the pond

A o :

Area of sub-grid

a p :

Area of outlet pipe of pond

C d :

Coefficient of discharge of pipe

g :

Acceleration due to gravity

H ts :

Tidal stage

H tsm :

Mean tidal stage

H tsr :

Half oscillation range

h d :

Discharge head above the outlet of the pond

h o :

Overland flow depth

h c :

Depth of flow in channel

h i,j :

Free water surface elevation

h ip :

Invert level of discharge outlet of pond

h p :

Water level in pond

h tl :

Tail water level in the pond

I o :

Inflow into sub-area

L :

Channel element length

N 1, N 2 :

Shape function for linear line element

n ch :

Manning’s channel roughness

n fp :

Manning’s roughness value in floodplain

η o :

Manning’s roughness value for overland flow grid

Q :

Discharge in channel

Q in :

Inflow into pond

Q out :

Outflow from pond

Q up :

Flux in up direction

q :

Overland flow

R :

Channel hydraulic radius

r :

Rainfall intensity

S c :

Channel bed slope

S o :

Slope of sub-grid of overland flow

t p :

Time period of one tidal cycle

\(V_{i,j}^{\text{t}}\) :

Volume of water

V p :

Volume of storage in pond

v x :

Velocity component of lateral discharge

Δt :

Time step

ΔV o :

Increment in storage of grid

Δx :

Linear dimension of cell

i :

Row position

j :

Column position

t :

Time level

References

  • Akan AO (1990) Single outlet detention pond analysis and design. J Irrig Drain Eng 116:527–536. doi:10.1061/(ASCE)0733-9437(1990)116:4(527)

    Article  Google Scholar 

  • Aral MM, Zhang Y, Jin S (1998) Application of relaxation scheme to wave-propagation simulation in open-channel networks. J Hydraul Eng 124:1125–1133. doi:10.1061/(ASCE)0733-9429(1998)124:11(1125)

    Article  Google Scholar 

  • Aronica GT, Lanza LG (2005) Drainage efficiency in urban areas: a case study. Hydrol Process 19:1105–1119. doi:10.1002/hyp.5648

    Article  Google Scholar 

  • Bates P, De Roo AP (2000) A simple raster-based model for flood inundation simulation. J Hydrol 236:54–77. doi:10.1016/S0022-1694(00)00278-X

    Article  Google Scholar 

  • Bates PD, Horritt MS, Fewtrell TJ (2010) A simple inertial formulation of the shallow water equations for efficient two-dimensional flood inundation modelling. J Hydrol 387:33–45. doi:10.1016/j.jhydrol.2010.03.027

    Article  Google Scholar 

  • Bradbrook KF, Lane SN, Waller SG, Bates PD (2004) Two dimensional diffusion wave modelling of flood inundation using simplified channel representation. Int J River Basin Manag 2:211–223

    Article  Google Scholar 

  • Chen AS, Evans B, Djordjević S, Savić DA (2012) A coarse-grid approach to representing building blockage effects in 2D urban flood modelling. J Hydrol 426–427:1–16. doi:10.1016/j.jhydrol.2012.01.007

    Google Scholar 

  • Chow V, Maidment DR, Mays LW (1988) Applied hydrology. McGraw-Hill Book Company, New York

  • CIDCO (2007) Velocity and tidal water level observation in Panvel creek for 1-D and 2-D mathematical model study for development of Navi Mumbai international airport. Navi Mumbai (unpublished)

  • Cunge JA, Holly FM, Verwey A (1980) Practical aspects of computational river hydraulics. Pitman Advanced Publishing Program, London

  • Desai YM, Eldho TI, Shah AH (2011) Finite element method with applications in engineering. Pearson Education, New Delhi

    Google Scholar 

  • Djordjević S, Prodanović D, Maksimović C et al (2005) SIPSON–simulation of interaction between pipe flow and surface overland flow in networks. Water Sci Technol 52:275–283

    Google Scholar 

  • El Kadi AK, Paquier A, Mignot E (2008) Modelling flash flood propagation in urban areas using a two-dimensional numerical model. Nat Hazards 50:433–460. doi:10.1007/s11069-008-9300-0

    Google Scholar 

  • Hsu M, Chen S, Chang T (2000) Inundation simulation for urban drainage basin with storm sewer system. J Hydrol 234:21–37. doi:10.1016/S0022-1694(00)00237-7

    Article  Google Scholar 

  • Hunter NM, Bates PD, Neelz S et al (2008) Benchmarking 2D hydraulic models for urban flooding. Proc Inst Civ Eng Water Manag 161:13–30. doi:10.1680/wama.2008.161.1.13

    Article  Google Scholar 

  • Jaber FH, Mohtar RH (2003) Stability and accuracy of two-dimensional kinematic wave overland flow modeling. Adv Water Resour 26:1189–1198. doi:10.1016/S0309-1708(03)00102-7

    Article  Google Scholar 

  • Jenamani R, Bhan S, Kalsi S (2006) Observational/forecasting aspects of the meteorological event that caused a record highest rainfall in Mumbai. Curr Sci 90:1344–1362

    Google Scholar 

  • Kulkarni AT, Mohanty J, Eldho TI et al (2014) A web GIS based integrated flood assessment modeling tool for coastal urban watersheds. Comput Geosci 64:7–14. doi:10.1016/j.cageo.2013.11.002

    Article  Google Scholar 

  • Leopardi A, Oliveri E, Greco M (2002) Two-dimensional modeling of floods to map risk-prone areas. J Water Resour Plan Manag 128:168–178. doi:10.1061/(ASCE)0733-9496(2002)128:3(168)

    Article  Google Scholar 

  • Lhomme J, Sayers P, Gouldby B, et al. (2008) Reccent development and application of a rapid flood spreading method. In: Samuels P, Huntington S, Allsop William HJ (eds) FLOODRisk 2008, 2009th ed. Oxford, pp 15–24

  • Maksimović C, Prodanovic D, Boonya-Aroonet S, Leitao J, Djordjevic Slobodan AR (2009) Overland flow and pathway analysis for modelling of urban pluvial flooding. J Hydraul Res 47:512–523. doi:10.3826/jhr2009.3361

    Article  Google Scholar 

  • McMillan HK, Brasington J (2007) Reduced complexity strategies for modelling urban floodplain inundation. Geomorphology 90:226–243. doi:10.1016/j.geomorph.2006.10.031

    Article  Google Scholar 

  • Mignot E, Paquier A, Haider S (2006) Modeling floods in a dense urban area using 2D shallow water equations. J Hydrol 327:186–199. doi:10.1016/j.jhydrol.2005.11.026

    Article  Google Scholar 

  • Moussa R, Bocquillon C (2009) On the use of the diffusive wave for modelling extreme flood events with overbank flow in the floodplain. J Hydrol 374:116–135. doi:10.1016/j.jhydrol.2009.06.006

    Article  Google Scholar 

  • Muralikrishnan S, Pillai A, Narender B et al (2012) Validation of Indian National DEM from Cartosat-1 Data. J Indian Soc Remote Sens 41:1–13. doi:10.1007/s12524-012-0212-9

    Article  Google Scholar 

  • Naidu V, Sarma R (2001) Numerical modeling of tide-induced currents in Thane Creek, west coast of India. J Waterw Port Coast Ocean Eng 127:241–244

    Article  Google Scholar 

  • Natu SV, Kulkarni RG, Vaidyaraman P, et al. (1992) Technical expert’s committee for total review of storm water drainage system designed at various nodes in New Bombay and to suggest remedial measures to avoid flooding. 123 (unpublished)

  • Schubert JE, Sanders BF (2012) Building treatments for urban flood inundation models and implications for predictive skill and modeling efficiency. Adv Water Resour 41:49–64. doi:10.1016/j.advwatres.2012.02.012

    Article  Google Scholar 

  • Seyoum SD, Vojinovic Z, Price RK, Weesakul S (2012) Coupled 1D and noninertia 2D flood inundation model for simulation of urban flooding. J Hydraul Eng 138:23–34. doi:10.1061/(ASCE)HY.1943-7900.0000485

    Article  Google Scholar 

  • Shahapure SS, Eldho TI, Rao EP (2010) Coastal urban flood simulation using FEM, GIS and remote sensing. Water Resour Manag 24:3615–3640. doi:10.1007/s11269-010-9623-y

    Article  Google Scholar 

  • Shahapure SS, Eldho TI, Rao EP (2011) Flood simulation in an urban catchment of Navi Mumbai City with detention pond and tidal effects using FEM, GIS, and remote sensing. J Waterw Port Coast Ocean Eng 137:286–299. doi:10.1061/(ASCE)WW.1943-5460.0000093

    Article  Google Scholar 

  • Vieux BE (2001) Distributed hydrologic modeling using GIS. Kluwer Academic Publishers, London

    Book  Google Scholar 

  • Wadey MP, Nicholls RJ, Haigh I (2013) Understanding a coastal flood event: the 10th March 2008 storm surge event in the Solent, UK. Nat Hazards 67:829–854. doi:10.1007/s11069-013-0610-5

    Article  Google Scholar 

  • Yin J, Yu D, Yin Z et al (2012) Multiple scenario analyses of Huangpu River flooding using a 1D/2D coupled flood inundation model. Nat Hazards 66:577–589. doi:10.1007/s11069-012-0501-1

    Article  Google Scholar 

  • Yu D, Lane SN (2006) Urban fluvial flood modelling using a two-dimensional diffusion-wave treatment, part 1: mesh resolution effects. Hydrol Process 20:1541–1565. doi:10.1002/hyp.5935

    Article  Google Scholar 

  • Zerger A, Wealands S (2004) Beyond modelling: linking models with GIS for flood risk management. Nat Hazards 33:191–208. doi:10.1023/B:NHAZ.0000037040.72866.92

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge their sincere gratitude to Department of Science and Technology (DST), Govt. of India, New Delhi for sponsoring the present study through 09DST033 project. The authors thank the engineers of CIDCO for providing data of the study area. The authors also thank the reviewer/s for their suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. I. Eldho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulkarni, A.T., Eldho, T.I., Rao, E.P. et al. An integrated flood inundation model for coastal urban watershed of Navi Mumbai, India. Nat Hazards 73, 403–425 (2014). https://doi.org/10.1007/s11069-014-1079-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-014-1079-6

Keywords

Navigation