Skip to main content

Advertisement

Log in

Prioritizing levee repairs: a case study for the city of Indianapolis, Indiana

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Levees are one of the major structures in the USA to protect land and property from devastating floods. Many of these were built primarily for protecting farmland in the mid-nineteenth century. However, urban development has led to increase in the number of homes sheltered by the levees, which were not designed with the necessary level of protection. In addition, lack of regular inspection and maintenance has left many levees in need of costly repairs. This study attempts to define a practical and economical means of prioritizing levee repairs based on the economic risk posed by the breaching of impaired levees and the expected improvement costs for returning the levees to a safer condition. A methodology for a simplified breach damage analysis is employed through a case study of five levees in a flood-prone area in central Indiana. Results of the case study provide a means of analytically prioritizing levee repairs and identify future research needs for advancement of the prioritization procedure. The use of an unsteady-flow analysis with storage areas to represent the protected areas is identified as a key component to a realistic characterization of the physical system. Comparisons between breach results, economic costs, and characteristics of the protected areas reveal no apparent correlations, suggesting a need for a ranking parameter. A priority ratio is identified in the case study results and suggested for use for prioritizing levee repairs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • American Society of Civil Engineers (2009) Report card for American infrastructure: levees

  • Bodenhamer DJ, Barrows RG (eds) (1994) The encyclopedia of Indianapolis. Indiana University Press, Bloomington, IN

    Google Scholar 

  • Burton C, Cutter S (2008) Levee failures and social vulnerability in the Sacramento-San Joaquin Delta Area, California. Nat Hazards Rev 9. Special issue: Flooding in the Central Valley 136–149

  • Christopher B. Burke Engineering, Ltd. (2007) City of Indianapolis levee assessment summary. Indianapolis, IN

  • Christopher B. Burke Engineering, Ltd. (2011). Southport AWT levee extension and improvements opinion of probable costs

  • Cowan WL (1956) Estimating hydraulic roughness coefficients. Agric Eng 37(7):473–475

    Google Scholar 

  • Federal Emergency Management Agency (2008) Fact sheet: requirements for mapping levees

  • Federal Emergency Management Agency (2010) Property acquisition projects (buyouts). Retrieved 12 June 2011, from Federal Emergency Management Agency. http://www.fema.gov/government/grant/mitmeasures/buyoutshow.shtm

  • Federal Emergency Management Agency (2011a) Indiana flood fact sheet

  • Federal Emergency Management Agency (FEMA) (2011b) Multi-hazard loss estimation methodology, flood model, Hazus-MH. Technical manual, Department of Homeland Security, FEMA, Mitigation Division, Washington, DC

  • Indiana Department of Natural Resources (2001) General guidelines for new dams and improvements to existing dams in Indiana. Indianapolis

  • Jaffe DD, Sanders B (2001) Engineered levee breaches for flood mitigation. ASCE J Hydraul Eng 127(6):471–479

    Article  Google Scholar 

  • Marion County, Indiana (2010) GIS data and aerial photography. Indianapolis, Indiana

  • McCuen RH (1998) Hydrologic analysis and design. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  • Merwade VM, Olivera F, Arabi M, Edleman S (2008) Uncertainty in flood inundation mapping—current issues and future directions. ASCE J Hydrol Eng 13(7):608–620

    Article  Google Scholar 

  • National Committee on Levee Safety (2009) Recommendations for a National Levee Safety Program

  • National Research Council (1983) Risk assessment in the federal government: managing the process. National Academies Press, Washington, DC

    Google Scholar 

  • National Resources Conservation Service (2013) Soil survey staff, natural resources conservation service, United States Department of Agriculture. Web Soil Survey. Available online at http://websoilsurvey.nrcs.usda.gov/. Accessed 1 Jan 2013

  • Perrow C (2007) The next catastrophe. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Remo JWF, Larson M, Pinter N (2012) Hydraulic and flood loss modeling of levee, floodplain, and river management strategies, Middle Mississippi River, USA. Nat Hazards 61:551–575

    Article  Google Scholar 

  • Savant G, Berger C, McAlpin T, Tate J (2011) Efficient implicit finite-element hydrodynamic model for dam and levee breach. J Hydraul Eng 137(9):1005–1018

    Article  Google Scholar 

  • Singh J, Altinakar MS, Ding Y (2011) Two-dimensional numerical modeling of dam-break flows over natural terrain using a central explicit scheme. Adv Water Resour 34:1366–1375

    Article  Google Scholar 

  • United States Army Corps of Engineers (2000) Design and construction of levees

  • United States Army Corps of Engineers (2006) National levee database. Retrieved 14 Jan 2011, from http://www.usace.army.mil

  • United States Geological Survey (2011) National elevation and land cover dataset. Retrieved 11 Jan 2011, from http://seamless.usgs.gov/

  • USACE (2010) Hydrologic modeling system, HEC-HMS: users manual, CPD-74A, U.S. Army Corps of Engineers, Hydrologic Engineering Center, Davis, CA

  • Ying X, Wang SSY, and Khan AK (2003). Numerical simulation of flood inundation due to dam and levee breach. In: Proceedings of ASCE world water and environmental resources congress, Philadelphia, USA

Download references

Acknowledgments

The authors would like to thank USGS, Marion County, FEMA, NOAA, and the Army Corps of Engineers for the data used in this study. We would also like to thank Christopher B. Burke Engineering, Ltd. for their support of the first author to pursue this study at Purdue University. The authors would also like to thank two anonymous reviewers whose comments helped improve the previous version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkatesh Merwade.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meunier, B., Merwade, V. Prioritizing levee repairs: a case study for the city of Indianapolis, Indiana. Nat Hazards 72, 997–1019 (2014). https://doi.org/10.1007/s11069-014-1057-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-014-1057-z

Keywords

Navigation