Skip to main content
Log in

On the resonance effect by dynamic soil–structure interaction: a revelation study

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

The present study makes an attempt to investigate the soil–structure resonance effects on a structure based on dynamic soil–structure interaction (SSI) methodology by direct method configuration using 2D finite element method (FEM). The investigation has been focused on the numerical application for the four soil–structure models particularly adjusted to be in resonance. These models have been established by single homogenous soil layers with alternating thicknesses of 0, 25, 50, 75 m and shear wave velocities of 300, 600, 900 m/s-a midrise reinforced concrete structure with a six-story and a three-bay that rests on the ground surface with the corresponding width of 1,400 m. The substructure has been modeled by plane strain. A common strong ground motion record, 1940 El Centro Earthquake, has been used as the dynamic excitation of time history analysis, and the amplitudes, shear forces and moments affecting on the structure have been computed under resonance. The applicability and accuracy of the FEM modeling to the fundamental period of soils have been confirmed by the site response analysis of SHAKE. The results indicate that the resonance effect on the structure becomes prominent by soil amplification with the increased soil layer thickness. Even though the soil layer has good engineering characteristics, the ground story of the structure under resonance is found to suffer from the larger soil layer thicknesses. The rate of increment in shear forces is more pronounced on midstory of the structure, which may contribute to the explanation of the heavily damage on the midrise buildings subjected to earthquake. Presumably, the estimated moment ratios could represent the factor of safeties that are excessively high due to the resonance condition. The findings obtained in this study clearly demonstrate the importance of the resonance effect of SSI on the structure and can be beneficial for gaining an insight into code provisions against resonance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Ansal A, Iyisan R, Güllü H (2001) Microtremor measurements for the microzonation of Dinar. Pure appl Geophys 158(12):2525–2541

    Article  Google Scholar 

  • Arnold C, Reitherman R (1982) Building configuration and seismic design. Wiley, New York

    Google Scholar 

  • Aviles J, Perez-Rocha LE (1997) Site effects and soil-structure interaction in the Valley of Mexico. Soil Dyn Earthq Eng 17:29–39

    Article  Google Scholar 

  • Aviles J, Perez-Rocha LE (2003) Soil–structure interaction in yielding systems. Earthq Eng Struct Dyn 32:1749–1771

    Article  Google Scholar 

  • Balendra T, Lam NTK, Perry MJ, Lumantarna E, Wilson JL (2005) Simplified displacement demand prediction of tall asymmetric buildings subjected to long-distance earthquakes. Eng Struct 27:335–348

    Article  Google Scholar 

  • Beyen K (2007) Structural identification for post-earthquake safety analysis of the Fatih mosque after the 17 August 1999 Kocaeli earthquake. Eng Struct 30(8):2165–2184

    Article  Google Scholar 

  • Borcherdt RD (1970) Effects of local geology on ground motion near San-Francisco Bay. Bull Seismol Soc Am 60:29–61

    Google Scholar 

  • Çelebi M (2000) Revelations from a single strong-motion record retrieved during the 27 June 1998 Adana (Turkey) earthquake. Soil Dyn Earthq Eng 20:283–288

    Article  Google Scholar 

  • Chandler AM, Lam NTK, Sheikh N (2002) Response spectrum predictions for potential near-field and far-field earthquakes affecting Hong Kong: soil sites. Soil Dyn Earthq Eng 22:419–440

    Article  Google Scholar 

  • Dutta SC, Roy R (2002) A critical review on idealization and modeling for interaction among soil–foundation–structure system. Comput Struct 80:1579–1594

    Article  Google Scholar 

  • Dutta SC, Bhattacharya K, Roy R (2004) Response of low-rise buildings under seismic ground excitation incorporating soil–structure interaction. Soil Dyn Earthq Eng 24:893–914

    Article  Google Scholar 

  • Gazetas G (1991) Formulas and charts for impedances of surface and embedded foundations. J Geotech Eng ASCE 117(9):1363–1381

    Article  Google Scholar 

  • Güllü H (2001) Microzonation of Dinar with respect to soil amplification by using geographic information systems. Ph.D. Thesis, İstanbul Technical University, Institute of Science and Technology, p 289

  • Halabian AM, El Naggar MH (2002) Effect of non-linear soil–structure interaction on seismic response of tall slender structures. Soil Dyn Earthq Eng 22:639–658

    Article  Google Scholar 

  • ICBO (1994) Uniform Building Code. 1991 International Conference of Building Officials, Whitter, California

  • Jaya KP, Meher Prasad A (2002) Embedded foundation in layered soil under dynamic excitations. Soil Dyn Earthq Eng 22:485–498

    Article  Google Scholar 

  • Khalil L, Sadek M, Shahrour I (2007) Influence of the soil–structure interaction on the fundamental period of buildings. Short Communication. Earthq Eng Struct Dyn 36:2445–2453

    Article  Google Scholar 

  • Kramer S (1996) Geotechnical earthquake engineering. Prentice Hall, New Jersey, p 653

    Google Scholar 

  • Lam NTK, Wilson JL, Chandler AM (2001) Seismic displacement response spectrum estimated from the frame analogy soil amplification model. J Eng Struct 23:1437–1452

    Article  Google Scholar 

  • Liao ZP, Wong HL (1984) A transmitting boundary for the numerical simulation of elastic wave propagation problems. J Comput Phys 3:174–183

    Google Scholar 

  • Lysmer J, Kuhlemeyer RL (1969) Finite dynamic model for infinite media. J Eng Mech Div ASCE 95:859–877

    Google Scholar 

  • Lysmer J, Waas G (1972) Shear wave in plane infinite structure. J Eng Mech Div ASCE 98(EM1):85–105

    Google Scholar 

  • Lysmer J, Udaka T, Tsai CF, Seed HB (1975) FLUSH: a computer program for approximate 3-D analysis of soil–structure interaction problems. Report EERC-75-30, Earthquake Engineering Research Center, University of California, Berkeley, CA, USA

  • Ostadan F, Chen CC, Lysmer J (2000) SASSI2000—a system for analysis of soil–structure interaction. University of California, Berkeley, CA, USA

    Google Scholar 

  • Pitilakis D, Dietz M, Muir Wood D, Clouteau D, Modaressi A (2007) Numerical simulation of dynamic soil–structure interaction in shaking table testing. Soil Dyn Earthq Eng 28(6):453–467

    Article  Google Scholar 

  • Sancio RB, Braya JD, Stewart JP, Youd TL, Durgunoglu HT, Onalp A, Seed RB, Christensen C, Baturay MB, Karadayılar T (2002) Correlation between ground failure and soil conditions in Adapazari, Turkey. Soil Dyn Earthq Eng 22:1093–1102

    Article  Google Scholar 

  • Schnabel PB, Lysmer J, Seed HB (1972) SHAKE: A Computer Program for Earthquake Response Analysis of Horizontally Layered Sites. Report No. UCB/EERC-72/12. Earthquake Engineering Research Center, University of California, Berkeley. December

  • Seed HB, Idriss IM (1970) Soil moduli and damping factors for dynamic response analyses. Report No:EERC-70-10. University of California, Berkeley, California

  • Smith WD (1974) A nonreflecting plane boundary for wave propagation problems. J Comput Phys 15:492–503

    Article  Google Scholar 

  • Stewart JP, Fenres GL, Seed RB (1999) Seismic soil–structure interaction in buildings I: analytical method. J Geotech Geoenviron Eng 125(1):26–37

    Article  Google Scholar 

  • Takewaki I (1988) Remarkable response amplification of building frames due to resonance with the surface ground. Soil Dyn Earthq Eng 17:211–218

    Article  Google Scholar 

  • Tezcan S, Kaya E, Bal E, Ozdemir Z (2002) Seismic amplification at Avcılar, Istanbul. Eng Struct 24:661–667

    Article  Google Scholar 

  • Ulusay R, Aydan O, Erken A, Tuncay E, Kumsar H, Kaya Z (2004) An overview of geotechnical aspects of the Cay-Eber (Turkey) earthquake. Eng Geol 73:51–70

    Article  Google Scholar 

  • Veletsos AS, Prasad A (1989) Seismic interaction of structures and soils: stochastic approach. J Struct Eng ASCE 115:935–956

    Article  Google Scholar 

  • Vucetic M, Dobry R (1991) Effect of soil plasticity on cyclic response. J Geotech Eng ASCE 117(1):89–107

    Article  Google Scholar 

  • Wegner JL, Yao MM, Zhang X (2005) Dynamic wave–soil–structure interaction analysis in the time domain. Comput Struct 83:2206–2214

    Article  Google Scholar 

  • Wenk T, Lacave C, Peter K (1998) The Adana-Ceyhan earthquake of June 27, 1998. Reconnaissance Report of the Swiss Society for Earthquake Engineering and Structural Dynamics, Zurich, Switzerland

  • Wolf JP (1985) Dynamic soil-structure interaction. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Wolf JP, Song CH (2002) Some cornerstones of dynamic soil–structure interaction. Eng Struct 24:13–28

    Article  Google Scholar 

  • Yalçınkaya E, Alptekin O (2005) Site effect and its relationship to the intensity and damage observed in the June 27, 1998 Adana-Ceyhan Earthquake. Pure Appl Geophys 162:913–930

    Article  Google Scholar 

  • Zhang X, Wegner JL, Haddow JB (1999) Three dimensional soil–structure–wave interaction analysis in time domain. Earthq Eng Struct Dyn 36:1501–1524

    Article  Google Scholar 

Download references

Acknowledgments

This study is supported by The Scientific Research Project Unit of University of Gaziantep. Dr K.Hazirbaba is gratefully acknowledged by the corresponding author of this paper for providing post-doctorate fellowship at his research project (Grant No. G3238-33650) at University of Alaska Fairbanks. The authors are grateful to the anonymous reviewers for carefully reviewing the manuscript and providing valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamza Güllü.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Güllü, H., Pala, M. On the resonance effect by dynamic soil–structure interaction: a revelation study. Nat Hazards 72, 827–847 (2014). https://doi.org/10.1007/s11069-014-1039-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-014-1039-1

Keywords

Navigation