Advertisement

Natural Hazards

, Volume 69, Issue 3, pp 1647–1660 | Cite as

Real-time landslide monitoring of Pubugou hydropower resettlement zone using continuous GPS

  • Ruya Xiao
  • Xiufeng He
Original Paper

Abstract

The rapid growth of hydropower in China raises concerns about the related resettlement issues. In order to obtain the real-time surface displacement data of the potential landslides, a continuous GPS observation network is established in new Hanyuan County where more than 100,000 people are resettled due to the Pubugou hydropower engineering in southwest China. GPS multi-antenna switch devices are used to reduce the hardware investment, and the results show that the RMSs of the two horizontal components are 2 and <4 mm for the vertical component. This level of accuracy is comparable to the conventional “one antenna with one receiver” GPS observation mode. The comparison between the displacements evaluated by GPS monitoring method and digital inclinometer shows consistency, and this indicates that GPS could be a reliable complement to traditional ground movement monitoring methods. No catastrophic landslide failures happened since the resettlement was completed. We captured a remarkable movement in August 2011, and this proves that the continuous GPS monitoring system could be used to detect early indications of rapid displacement and for disaster warning.

Keywords

Resettlement zone Landslide Real-time monitoring GPS multi-antenna Digital inclinometer 

Notes

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant No. 41274017, 41204002, 40974001 and 50579013), the Key Technology R&D Program of Jiangsu Province (Grant No. BE2010316), Fundamental Research Funds for the Central Universities (Grant No. 2010B14714) and Jiangsu Graduate Student Research Innovative Projects (Grant No. CXZZ11_0451). Ms ZHU Jialu’s help in polishing the language is highly appreciated; meanwhile, the authors would like to thank the anonymous reviewers for their constructive comments that helped in improving the quality of this manuscript.

References

  1. Bruckl E, Brunner FK, Kraus K (2006) Kinematics of a deep-seated landslide derived from photogrammetric GPS and geophysical data. Eng Geol 88(3–4):149–159. doi: 10.1016/j.enggeo.2006.09.004 CrossRefGoogle Scholar
  2. Calcaterra S, Cesi C, Di Maio C, Gambino P, Merli K, Vallario M, Vassallo R (2012) Surface displacements of two landslides evaluated by GPS and inclinometer systems: a case study in Southern Apennines Italy. Nat Hazards 61(1):257–266. doi: 10.1007/s11069-010-9633-3 CrossRefGoogle Scholar
  3. Chen YQ, Ding XL, Huang DF, Zhu JJ (2000) A multi-antenna GPS system for local area deformation monitoring. Earth Planets Space 52(10):873–876Google Scholar
  4. Coe JA, Ellis WL, Godt JW, Savage WZ, Savage JE, Michael JA, Kibler JD, Powers PS, Lidke DJ, Debray S (2003) Seasonal movement of the Slumgullion landslide determined from global positioning system surveys and field instrumentation. Eng Geol 68(1–2):67–101. doi: 10.1016/s0013-7952(02)00199-0 CrossRefGoogle Scholar
  5. Ding XL, Huang DF, Yin JH, Chen YQ, Lau CK, Yang YW, Sun YR, Chen W, He XF (2003) Development and field testing of a multi-antenna GPS system for deformation monitoring. Wuhan Univ J Natural Sci 8(2):671–676CrossRefGoogle Scholar
  6. Dogan U (2007) Accuracy analysis of relative positions of permanent GPS stations in the Marmara Region Turkey. Surv Rev 39(304):156–165. doi: 10.1179/003962607x165113 CrossRefGoogle Scholar
  7. Eckl MC, Snay RA, Soler T, Cline MW, Mader GL (2001) Accuracy of GPS-derived relative positions as a function of interstation distance and observing-session duration. J Geod 75(12):633–640. doi: 10.1007/s001900100204 CrossRefGoogle Scholar
  8. Gili JA, Corominas J, Rius J (2000) Using global positioning system techniques in landslide monitoring. Eng Geol 55(3):167–192. doi: 10.1016/s0013-7952(99)00127-1 CrossRefGoogle Scholar
  9. Guglielmino F, Nunnari G, Puglisi G, Spata A (2011) Simultaneous and integrated strain tensor estimation from geodetic and satellite deformation measurements to obtain three-dimensional displacement maps. IEEE Trans Geosci Remote Sens 49(6):1815–1826. doi: 10.1109/tgrs.2010.2103078 CrossRefGoogle Scholar
  10. Hastaoglu KO, Sanli DU (2011) Monitoring Koyulhisar landslide using rapid static GPS: a strategy to remove biases from vertical velocities. Nat Hazards 58(3):1275–1294. doi: 10.1007/s11069-011-9728-5 CrossRefGoogle Scholar
  11. He XF, Guang Y, Ding XL, Chen YQ (2004) Application and evaluation of a GPS multi-antenna system for dam deformation monitoring. Earth Planets Space 56(11):1035–1039Google Scholar
  12. He XF, Luo HB, Huang QH, He M (2007) Integration of InSAR and GPS for hydraulic engineering. Sci China Ser E: Technol Sci 50:111–124. doi: 10.1007/s11431-007-6009-3 CrossRefGoogle Scholar
  13. He XF, Jia DZ, Sang WG (2011) Monitoring steep slope movement at Xiaowan dam with GPS multi-antenna method. Surv Rev 43(323):462–471. doi: 10.1179/003962611x13117748891831 CrossRefGoogle Scholar
  14. Malet JP, Maquaire O, Calais E (2002) The use of global positioning system techniques for the continuous monitoring of landslides: application to the Super-Sauze earthflow (Alpes-de-Haute-Provence, France). Geomorphology 43(1–2):33–54. doi: 10.1016/s0169-555x(01)00098-8 CrossRefGoogle Scholar
  15. Mora P, Baldi P, Casula G, Fabris M, Ghirotti M, Mazzini E, Pesci A (2003) Global positioning systems and digital photogrammetry for the monitoring of mass movements: application to the Ca’ di Malta landslide (northern Apennines, Italy). Eng Geol 68(1–2):103–121. doi: 10.1016/s0013-7952(02)00200-4 CrossRefGoogle Scholar
  16. Moss JL (2000) Using the global positioning system to monitor dynamic ground deformation networks on potentially active landslides. Int J Appl Earth Obs Geoinf 2(1):24–32CrossRefGoogle Scholar
  17. Peyret M, Djamour Y, Rizza M, Ritz JF, Hurtrez JE, Goudarzi MA, Nankali H, Chery J, Le Dortz K, Uri F (2008) Monitoring of the large slow Kahrod landslide in Alborz mountain range (Iran) by GPS and SAR interferometry. Eng Geol 100(3–4):131–141. doi: 10.1016/j.enggeo.2008.02.013 CrossRefGoogle Scholar
  18. Psimoulis P, Ghilardi M, Fouache E, Stiros S (2007) Subsidence and evolution of the Thessaloniki plain, Greece, based on historical leveling and GPS data. Eng Geol 90(1–2):55–70. doi: 10.1016/j.enggeo.2006.12.001 CrossRefGoogle Scholar
  19. Sassa K, Fukuoka H, Wang FW, Wang GH (2005a) Dynamic properties of earthquake-induced large-scale rapid landslides within past landslide masses. Landslides 2(2):125–134. doi: 10.1007/s10346-005-0055-3 CrossRefGoogle Scholar
  20. Sassa K, Wang GH, Fukuoka H, Vankov DA (2005b) Shear-displacement-amplitude dependent pore-pressure generation in undrained cyclic loading ring shear tests: an energy approach. J Geotech Geoenviron Eng 131(6):750–761CrossRefGoogle Scholar
  21. Soler T, Michalak P, Weston ND, Snay RA, Foote RH (2006) Accuracy of OPUS solutions for 1- to 4-h observing sessions. GPS Solut 10(1):45–55. doi: 10.1007/s10291-005-0007-3 CrossRefGoogle Scholar
  22. Squarzoni C, Delacourt C, Allemand P (2005) Differential single-frequency GPS monitoring of the La Valette landslide (French Alps). Eng Geol 79(3–4):215–229. doi: 10.1016/j.enggeo.2005.01.015 CrossRefGoogle Scholar
  23. Stoica A, Savastru D, Tautan M (2008) The use of high precision global navigation satellitary systems (GNSS) for monitoring deformation of buildings at risk-for landslides, in flooding areas. J Optoelectron Adv Mater 10(6):1495–1500Google Scholar
  24. Su MB, Chen IH, Liao CH (2009) Using TDR cables and GPS for landslide monitoring in high mountain area. J Geotech Geoenviron Eng 135(8):1113–1121. doi: 10.1061/(asce)gt.1943-5606.0000074 CrossRefGoogle Scholar
  25. Tagliavini F, Mantovani M, Marcato G, Pasuto A, Silvano S (2007) Validation of landslide hazard assessment by means of GPS monitoring technique—a case study in the Dolomites (Eastern Alps, Italy). Nat Hazards Earth Syst Sci 7(1):185–193CrossRefGoogle Scholar
  26. Wang G-Q (2012) Kinematics of the Cerca del Cielo, Puerto Rico landslide derived from GPS observations. Landslides 9(1):117–130. doi: 10.1007/s10346-011-0277-5 CrossRefGoogle Scholar
  27. Yi W-J, Zou L-L, Guo J, Wang K, Wei Y-M (2011) How can China reach its CO2 intensity reduction targets by 2020? A regional allocation based on equity and development. Energy Policy 39(5):2407–2415. doi: 10.1016/j.enpol.2011.01.063 CrossRefGoogle Scholar
  28. Yin YP, Wang HD, Gao YL, Li XC (2010a) Real-time monitoring and early warning of landslides at relocated Wushan Town, the Three Gorges Reservoir China. Landslides 7(3):339–349. doi: 10.1007/s10346-010-0220-1 CrossRefGoogle Scholar
  29. Yin YP, Zheng WM, Liu YP, Zhang JL, Li XC (2010b) Integration of GPS with InSAR to monitoring of the Jiaju landslide in Sichuan China. Landslides 7(3):359–365. doi: 10.1007/s10346-010-0225-9 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Institute of Satellite Navigation and Spatial Information SystemHohai UniversityNanjingChina

Personalised recommendations