Natural Hazards

, Volume 69, Issue 3, pp 1369–1388 | Cite as

Probabilistic assessment of tephra fallout hazard at Changbaishan volcano, Northeast China

  • Hongmei Yu
  • Jiandong Xu
  • Peng Luan
  • Bo Zhao
  • Bo Pan
Original Paper


Tephra fallout is an important type of hazard caused by volcanic eruption, and is also one of the main hazards at Changbaishan volcano, Northeast China. Numerical simulation is an effective approach to assess the dispersion of tephra fallout. According to the theory of dispersion model, we developed a simple and practical diffusion program that can be run on a personal computer. The input parameters for the simulation of tephra fallout from the Millennium Eruption of Changbaishan volcano, such as the size, density and shape of the tephra, the bulk volume and column height, the diffusion parameter P(z), wind direction and intensity, were obtained by field investigation and laboratory analysis. The simulated results in the intermediate scope when the parameter β > 0.3 are in good agreement with the results from measurement in situ, indicating that the model is reliable and the parameters used in the model are reasonable. We carried out more than 20,000 tephra fallout simulations using a statistical dataset of wind profiles which are obtained from China Meteorological Data Sharing Service System (CMDSSS). Tephra fallout hazard probability maps related to high- and low- magnitude eruption scenarios in Changbaishan volcano, are constructed for several tephra thickness thresholds, such as 70, 20, 10 and 1 cm. The results from this study can give support to the risk mitigation plans in Changbaishan area.


Tephra fallout Dispersion model Hazard probability map Millennium eruption Changbaishan volcano 



We thank Hao yongwei, Liao Kaining and Li Xiaoli of Institute of Geology, China Earthquake Administration for their support and help in using parallel computing facility. This work was supported by the Special projects for China earthquake research (Grant no. 201208005 and 200708-27).


  1. Armienti P, Macedonio G, Pareschi MT (1988) A numerical-model for simulation of tephra transport and deposition: applications to May 18, 1980, Mount-St-Helens eruption. J Geophys Res 93(B6):6463–6476CrossRefGoogle Scholar
  2. Barberi F, Macedonio G, Pareschi MT, Santacroce R (1990) Mapping the tephra fallout risk: an example from Vesuvius, Italy. Nature 344:142–144. doi: 10.1038/344142a0 CrossRefGoogle Scholar
  3. Baxter PJ (1999) Impacts of eruptions on human health. In: Siggurdson H (ed) Encyclopaedia of Volcanoes. Academic Press, New York, pp 1035–1043Google Scholar
  4. Baxter PJ, Ing R, Falk H, French J, Stein GF, Bernstein RS, Merchant JA, Allard J (1981) Mount St. Helens Eruptions, May 18 to June 12, 1980: an overview of the acute health impact. J Am Med As 246(22):2585–2589CrossRefGoogle Scholar
  5. Baxter PJ, Bernstein RS, Buist AS (1986) Health effects of volcanoes: an approach to evaluating the health effects of an environmental hazard. Am J Public Health 76(Supplement):84–90CrossRefGoogle Scholar
  6. Baxter PJ, Bonadonna C, Dupree R, Hards VL, Kohn SC, Murphy MD, Nichols A, Nicholson RA, Norton G, Searl A, Sparks AJ, Vickers BP (1999) Cristobalite in volcanic ash of the Soufriere Hills Volcano, Montserrat, British West Indies. Science 283:1142–1145CrossRefGoogle Scholar
  7. Biass S, Bonadonna C (2013) A fast GIS-based risk assessment for tephra fallout : the example of otopaxi volcano, Ecuador—Part I : hazard assessment. Nat Hazards 65(1):477–495CrossRefGoogle Scholar
  8. Biass S, Frischknecht C, Bonadonna C (2012) A fast GIS-based risk assessment for tephra fallout : the example of Cotopaxi volcano, Ecuador—Part II : vulnerability and risk assessment. Nat Hazards 64(1):615–639CrossRefGoogle Scholar
  9. Bonadonna C, Phillips JC (2003) Sedimentation from strong volcanic plumes. J Geophys Res 108(B7):2340Google Scholar
  10. Bonadonna C, Ernst GGJ, Sparks RSJ (1998) Thickness variations and volume estimates of tephra fall deposits: the importance of particle Reynolds number. J Volcanol Geotherm Res 81(3–4):173–187CrossRefGoogle Scholar
  11. Bonadonna C, Macedonio G, Sparks RSJ (2002) Numerical model of tephra fallout with dome collapses and Vulcanian explosions: application to hazard assessment on Montserrat. Mem Geol Soc Lond 21:517–537CrossRefGoogle Scholar
  12. Bonadonna C, Connor CB, Houghton BF, Connor L, Byrne M, Laing A, Hincks TK (2005) Probabilistic modeling of tephra dispersion: hazard assessment of a multi-phase rhyolitic eruption at Tarawera New Zealand. J Geophys Res 110:B03203. doi: 10.1029/2003JB002896 Google Scholar
  13. Bonasia R, Capra L, Costa A, Macedonio G, Saucedo R (2011) Tephra fallout hazard assessment for a Plinian eruption scenario at Volcán de Colima (Mexico). J Volcanol Geotherm Res 203:12–22CrossRefGoogle Scholar
  14. Bonasia R, Costa A, Folch A, Macedonio G, Capra L (2012) Numerical simulation of tephra transport and deposition of the 1982 El Chichón eruption and implications for hazard assessment. J Volcanol Geotherm Res 231–232:39–49. doi: 10.1016/j.jvolgeores.2012.04.006 CrossRefGoogle Scholar
  15. Bursik MI, Carey SN, Sparks RSJ (1992) A gravity current model for the May 18, 1980 Mount St Helens Plume. Geophys Res Lett 19:1663–1666CrossRefGoogle Scholar
  16. Carey S, Sigurdsson H (1982) Influence of particle aggregation on deposition of distal tephra from the May 18,1980 eruption of Mount St Helens. J Geophys Res 87:7061–7072CrossRefGoogle Scholar
  17. Carey S, Sparks RSJ (1986) Quantitative models of the fallout and dispersal of tephra from volcanic eruption columns. Bull Volcanol 48(2–3):109–125. doi: 10.1007/BF01046546 CrossRefGoogle Scholar
  18. Coltelli M, Miraglia L, Scollo S (2008) Characterization of shape and terminal velocity of tephra particles erupted during the 2002 eruption of Etna volcano Italy. Bull Volcanol 70(9):1103–1112. doi: 10.1007/s00445-007-0192-8 CrossRefGoogle Scholar
  19. Connor CB, Hill BE, Winfrey B, Winfrey B, Franklin NM, La Femina PC (2001) Estimation of Volcanic Hazards from Tephra Fallout. Nat Hazards Rev 2(1):33–42CrossRefGoogle Scholar
  20. Costa A, Macedonio G, Folch A (2006) A three-dimensional Eulerian model for transport and deposition of volcanic ashes. Earth Planet Sci Lett 241:634–647CrossRefGoogle Scholar
  21. Costa A, Dell’Erba F, Di Vito MA (2009) Tephra fallout hazard assessment at the Campi Flegrei caldera (Italy). Bull Volcanol 71:259–273CrossRefGoogle Scholar
  22. Dellino P, La Volpe L (1996) Image processing analysis in reconstructing fragmentation and transportation mechanisms of pyroclatic deposits. The case of Monte Pilato-Rocche Rosse eruptions, Lipari (Aeolian Islands, Italy). J Volcanol Geotherm Res 71:13–29CrossRefGoogle Scholar
  23. Dellino P, Mele D, Bonasia R, Braia G, Volpe LL, Sulpizio R (2005) The analysis of the influence of pumice shape on its terminal velocity. Geophys Res Lett 32:1–4Google Scholar
  24. Edward WW, Thomas CP (1995) Volcanic-Hazard Zonation for Mount St. Helens, Washington. US Geol Surv Open-File Rep 95–497Google Scholar
  25. Fan Q, Sui J, Sun Q, Li N, Wang T (2005) Preliminary research of magma mixing and explosive mechanism of the Millennium eruption of Tianchi volcano. Acta Petrol Sin 21(6):1703–1708 (in Chinese with English abstract)Google Scholar
  26. Fedele FG, Giaccio B, Isaia R, Orsi G (2003) The Campanian Ignimbrite eruption, Heinrich Event 4, and Palaeolithic change in Europe: a high-resolution investigation. In: Robock A, Oppenheimer C (eds) Volcanism and the Earth’s atmosphere. Am Geophys Un, Geophys Monog Ser 139. American Geophysical Union, Washington, pp 301–325CrossRefGoogle Scholar
  27. Gill J, Dunlap C, MeCurry M (1992) Large-volume, Mid-latitude, C1-richVolcanic Eruption during 600-1000 AD, Baitoushan, China.American Geophysical Union Chapman Conference on Climate, Volcanism and Global Change (Abstract) 18(3):23–27Google Scholar
  28. Glaze LS, Self S (1991) Ashfall dispersal for the 16 September 1986, eruption of Lascer, Chile, calculated by a turbulent diffusion model. Geophys Res Lett 18(7):1237–1240CrossRefGoogle Scholar
  29. Guo Z, Liu J, Sui S, Liu Q, He H, Ni Y (2002) The mass estimation of volatile emission during 1199–1200 AD eruption of Baitoushan volcano and its significance. Sci China Ser D 45(6):530–539CrossRefGoogle Scholar
  30. Heffter JL, Stunder BJB (1993) Volcanic ash forecast transport and dispersion (VAFTAD) model. Weather Forecast 8:533–541CrossRefGoogle Scholar
  31. Hoblitt RP, Walder JS, Driedger CL, Scott KM, Pringle PT, Vallance JW (1998) Volcano Hazards from Mount Rainier, Washington. US Geol Surv Open-File Rep 98–428Google Scholar
  32. Horn S, Schmincke HU (2000) Volatile emission during the eruption of Baitoushan Volcano (China/North Korea) ca. 969 AD. Bull Volcanol 61(8):537–555Google Scholar
  33. Liu R (1998) The Recent Eruption of Tianchi Volcano. Science Press, Beijing (in Chinese), ChangbaishanGoogle Scholar
  34. Liu R (2000) The active volcanoes in China. Seismological Press, Beijing, pp 17–31 (in Chinese)Google Scholar
  35. Liu X, Xiang T (1997) Cenozoic volcanoes and Pyroclastic deposits in Northeastern China resources and hazards. Jilin University Publishing House, Changchun, pp 83–106 142 (in Chinese)Google Scholar
  36. Liu R, Li J, Wei H, Xu D, Zhen Z (1992) Volcano at Tianchi lake, Changbaishan MT.—A modern volcano with potential danger of eruption. Acta Geophys Sinica 35(5):661–665 (in Chinese with English abstract)Google Scholar
  37. Macedonio G, Pareschi MT, Santacroce R (1988) A numerical simulation of the Plinian fall phase of 79 AD eruption of Vesuvius. J Geophys Res-Solid 93(B12):14817–14827CrossRefGoogle Scholar
  38. Macedonio G, Costa A, Longo A (2005) A computer model for volcanic ash fallout and assessment of subsequent hazard. Comput Geosci 31:837–845CrossRefGoogle Scholar
  39. Macedonio G, Costa A, Folch A (2008) Ash fallout scenarios at Vesuvius: numerical simulations and implications for hazard. J Volcanol Geotherm Res 178(3):66–377Google Scholar
  40. Machida H, Arai F (1983) Extensive ash falls in and around the Sea of Japan from large late Quaternary eruptions. J Volcanol Geotherm Res 18:151–164CrossRefGoogle Scholar
  41. Mastrolorenzo G, Pappalardo L, Troise C, Panizza A, De Natale G (2008) Probabilistic tephra hazard maps for the Neapolitan area: quantitative volcanological study of Campi Flegrei eruptions. J Geophys Res 113:B07203. doi: 10.1029/2007JB004954 Google Scholar
  42. Mills MJ (2000) Volcanic aerosol and global atmospheric effects. In: Sigurdsson H, Houghton BF, McNutt SR et al (eds) Encyclopedia of volcanoes. Academic, San Diego, pp 931–943Google Scholar
  43. Nanayama F, Satake K, Furukawa R, Shimokawa K, Atwater BF, Shigeno K, Yamaki S (2003) Unusually large earthquakes inferred from tsunami deposits along the Kuril trench. Nature 424:660–663CrossRefGoogle Scholar
  44. Oppenheimer C (ed) (2011) Eruptions that shook the world. Cambridge Univ Press, Cambridge. doi: 10.1017/CBO9780511978012 Google Scholar
  45. Pfeiffer T, Costa A, Macedonio G (2005) A model for the numerical simulation of tephra fall deposits. J Volcanol Geotherm Res 140:273–294CrossRefGoogle Scholar
  46. Rampino MR, Self S (2000) Volcanism and biotic extinctions. In: Sigurdsson H, Houghton BF, McNutt SR et al (eds) Encyclopedia of volcanoes. Academic, San Diego, pp 1083–1091Google Scholar
  47. Rhoades DA, Dowrick DJ, Wilson CJN (2002) Volcanic Hazard in New Zealand: scaling and attenuation relations for Tephra fall deposits from Taupo Volcano. Nat Hazards 26:147–174CrossRefGoogle Scholar
  48. Searcy C, Dean K, Stringer W (1998) PUFF: a high resolution volcanic ash tracking model. J Volcanol Geotherm Res 80:1–16CrossRefGoogle Scholar
  49. Sparks RSJ, Wilson L, Sigurdsson H (1981) The pyroclastic deposits of the 1875 eruption of Askja Iceland, Philos. Trans R Soc London 229:241–273CrossRefGoogle Scholar
  50. Sulpizio R, Folch A, Costa A, Scaini C, Dellino P (2012) Hazard assessment of far-range volcanic ash dispersal from a violent Strombolian eruption at Somma-Vesuvius volcano, Naples, Italy: implications on civil aviation. Bull Volcanol 74:2205–2218CrossRefGoogle Scholar
  51. Suzuki T (1983) A theoretical model for dispersion of tephra. In: Shimozuru D, Yokoyama I (eds) Arc Volcanism: Physics and Tectonics. Terra Scientific Publishing Company, Tokyo, pp 95–113Google Scholar
  52. Walker GPL (1980) The Taupo pumice: product of the most powerful known (ultraplinian) eruption? J Volcanol Geotherm Res 8:69–94CrossRefGoogle Scholar
  53. Wei H (2010) Magma up-moving process within the magma prism beneath the Changbaishan volcanoes. Earth Sci Front 17(1):011–023 (in Chinese with English abstract)Google Scholar
  54. Wei H, Sparke RSJ, Liu R, Fan Q, Wang Y, Hong H, Zhang H, Chen H, Jiang C, Dong J, Zheng Y, Pan Y (2003) Three active volcanoes in China and their hazards. J Asian Earth Sci 21:515–526CrossRefGoogle Scholar
  55. Wei H, Wang Y, Jin J, Gao L, Yun S, Jin B (2007) Timescale and evolution of the intracontinental Tianchi volcanic shield and ignimbrite-forming eruption, Changbaishan, Northeast China. Lithos 96:315–324CrossRefGoogle Scholar
  56. Wu J, Ming Y, Zhang H (2005) Seismic activity at the Changbaishan Tianchi volcano in the summer of 2002. Chinese J Geophys 48(3):621–628 (in Chinese with English abstract)Google Scholar
  57. Wu J, Ming Y, Zhang H, Liu G, Fang L, Su W, Wang W (2007) Earthquake swarm activity in Changbaishan Tianchi volcano. Chin J Geophys 50(4):1089–1096 (in Chinese with English abstract)CrossRefGoogle Scholar
  58. Xu J, Liu G, Wu J, Ming Y, Wang Q, Cui D, Shangguan Z, Pan B, Lin X, Liu J (2012) Recent unrest of Changbaishan volcano, northeast China: a precursor of a future eruption? Geophys Res Lett 39(L16305):1–7. doi: 10.1029/2012GL052600 Google Scholar
  59. Xu J, Pan B, Liu T, Hajdas I, Zhao B, Yu H, Liu R, Zhao P (2013) Climatic impact of the millennium eruption of Changbaishan volcano in China: new insights from high-precision radiocarbon wiggle-match dating. Geophys Res Lett 40:54–59. doi: 10.1029/2012GL054246 CrossRefGoogle Scholar
  60. Yang Q, Sun G, Li J, Wei H, Liu R (1998) Airfall deposit and eruptive dynamics parameters of explosion of Tianchi volcano, Changbaishan, in 1215AD. Seismol Res Northeast China 14(2):53–58 (in Chinese with English abstract)Google Scholar
  61. Yang Q, Shi L, Chen X, Chen B, Zhang Y (2006) Characteristic of recent ejecta of the Changbaishan Tianchi volcano China. Seismol Geol 28:71–83 (in Chinese with English abstract)Google Scholar
  62. Yu H, Xu J, Lin C (2011) Morphological characterization and terminal velocity of pumice particles eruption during the millennium eruption of Changbaishan Tianchi volcano China. Seismol Geol 33(2):440–451 (in Chinese with English abstract)Google Scholar
  63. Zhao B, Xu J, Yu H (2010) Grain-size characteristics of pyroclasts in Changbaishan Mountain area. Seismol Geol 32(2):1–11 (in Chinese with English abstract)Google Scholar
  64. Zou H, Fan Q, Zhang H (2010) Rapid development of the great Millennium eruption of Changbaishan (Tianchi) Volcano, China/North Korea: evidence from U-Th zircon dating. Lithosphere 119(3–4):289–296Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Hongmei Yu
    • 1
  • Jiandong Xu
    • 1
  • Peng Luan
    • 2
  • Bo Zhao
    • 1
  • Bo Pan
    • 1
  1. 1.Key Laboratory of Active Tectonics and Volcano, Institute of GeologyChina Earthquake AdministrationBeijingChina
  2. 2.Chinese Academy of Land and Resource EconomicsBeijingChina

Personalised recommendations