Natural Hazards

, Volume 68, Issue 3, pp 1425–1440 | Cite as

Identifying flood-prone landfills at different spatial scales

Original Paper


Landfills are mainly located in lowland areas close to settlements inducing flood risk of potential environmental contamination and adverse health effects. During recent flood events, numerous landfill sites were reportedly exposed to inundations, leading to erosion of landfilled material and release of pollutants threatening humans and the environment. Although emissions from landfills under regular operating conditions are well investigated, the behaviour and associated emissions in case of flooding are widely unknown. To enable environmental risk management, flood-prone landfills must be identified to establish priorities for subsequent protection and mitigation measures. This paper presents two flood risk assessment approaches at different spatial scales: a macro-scale assessment approach (MaSA) and a micro-scale assessment approach (MiSA). Both methodologies aim to determine the proportion of landfills endangered by flooding, and evaluate the impacts. The latter are expressed by means of risk categories (minor to serious) of impacts that flooded sites might have on humans and the environment. The evaluation of 1,064 landfills in Austria based on MaSA yields roughly 30 % of landfills located within or close to flood risk zones. Material inventories of 147 sites exposed to flooding are established, and potential emissions during a flood event are estimated. Three representative case study areas are selected and investigated in detail by applying the MiSA approach based on 2D hydrodynamic models to calculate flow depths and shear stress and by developing emission scenarios to validate the macro-scale screening approach (MaSA). The applications of MiSA and MaSA outlines that hazardous emissions due to flooding can lead to significant impacts on the environment. Uncertainty associated with related processes and data sources is considerably high. Nevertheless, both MiSA and MaSA provide a decision support tool to identify landfills with imminent risk for humans and the environment. Therefore, the described methodologies provide toolsets to enable environmental risk reduction by applying a priority-ranked flood risk management.


Environmental flood risk assessment Landfill Spatial scales Uncertainty Decision support 



The author wishes to express his gratitude to the federal governments of Salzburg and Tirol for providing the model set-ups for case study 2 and case study 3. This project was funded by the Federal Ministry of Transport, Innovation and Technology within the framework of the KIRAS Safety Research Program. Additional support was provided by the Federal Ministry of Agriculture, Forestry, Environment and Water Management.


  1. Ackermann F, Bergmann H, Schleichert U (1983) Monitoring of heavy metals in coastal and estuarine sediments—a question of grain-size: <20 μm versus <60 μm. Environm Technol Lett 4:317–328CrossRefGoogle Scholar
  2. AFEA (2008a) Austrian Federal Environment Agency—Umweltbundesamt, GIS data supply
  3. AFEA (2008b) Austrian Federal Environment Agency—Umweltbundesamt, Altlast T10 “Deponie Pflach” Beurteilung der Sicherungsmaßnahmen. www. umweltbundesamt.atGoogle Scholar
  4. Baborowski M, Förstner U, Kern U, Netzband A, Pütz H, Zerling L, Westrich B, Asselmann N, Böhme M, Büttner O, Bungartz H, Engelhardt C, Haag I, Heise S, Jacub G, Krüger A, Krüger F, Matthies M, Middelkoop H, Otte-Witte K, Prochnow D, Prohaska S, Rode M, Schulz M, von Tümpling W, Wurms S (2011) Kontaminierte Gewässersedimente—strategie, Fallbeispiele, Empfehlungen. DWA-Themen T3/2011, Bad Tölz: Offsetdruck Bokor: 3Google Scholar
  5. Baccini P, Henseler G, Figi R, Belevi H (1987) Water and element balances of municipal solid waste landfills. Waste Manage Res 5:483–499CrossRefGoogle Scholar
  6. Belevi H, Baccini P (1989) Long-term behaviour of municipal solid waste landfills. Waste Manage Res 7:43–56Google Scholar
  7. BEV (2008) Bundesamt für Eich- und Vermessungswesen, GIS data supply digital elevation model,
  8. Blackburn J, Steffler P (2002) River2D, Two-dimensional depth averaged model of river hydrodynamics and fish habitat, introduction to depth averaged modelling and user’s manual, University of Alberta,
  9. Blight GE, Fourie A (2005) Catastrophe revisited—disastrous flow failures of mine and municipal solid waste. Geotech Geol Eng 23:219–248CrossRefGoogle Scholar
  10. BMLFUW (1996) Bundesgesetzblatt für die Republik Österreich, 186. Verordnung: Allgemeine Begrenzung von Abwasseremissionen in Fließgewässer und öffentliche Kanalisationen (AAEV). WienGoogle Scholar
  11. BMLFUW (2006a) Federal waste management plan 2006. Federal Ministry of Agriculture and Forestry, Environment and Water Management, Vienna, p 320Google Scholar
  12. BMLFUW (2006b) Hochwasserrisikozonierung Austria—HORA, Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft,
  13. BMLFUW (2007) digital hydrologic Atlas Austria
  14. BMLFUW (2008a) Kosten-Nutzen-Untersuchung im Schutzwasserbau: Richtlinie, available online: Scholar
  15. BMLFUW (2008b) Austrian landfill directive. Verordnung über die Ablagerung von Abfällen,
  16. Bogner J, Spokas K (1993) Landfill CH4: rates, fates, and role in global carbon cycle. Chemosphere 26:369–386CrossRefGoogle Scholar
  17. BUWAL (1999) Risikoanalyse bei gravitativen Naturgefahren—Methode. Umwelt-Materialien Nr. 107/I, Naturgefahren: Bern: Bundesamt für Umwelt, Wald und LandschaftGoogle Scholar
  18. Christensen TH, Kjeldsen P, Lindhardt B (1996) Gas-generating processes in landfills. In: Christensen TH (ed) Landfilling of waste: biogas. E&FN Spon, London, pp 27–44Google Scholar
  19. Clevers JGPW, Kooistra L, Salas EAL (2004) Study of heavy metal contamination in river flood-plains using the red-edge position in spectroscopic data. Int J Remote Sens 2004(25):883–3895Google Scholar
  20. Curtis JA, Whitney JW (2003) Geomorphic and hydrologic assessment of erosion hazards at the Norman municipal landfill, Canadian river floodplain, Central Oklahoma. Environ Eng Geosci 2003(9):241–253CrossRefGoogle Scholar
  21. Döberl G, Huber R, Fellner J, Cencic O, Brunner PH (2002) Neue Strategien zur Nachsorge von Deponien und zur Sanierung von Altlasten (Projekt STRANDEZA). Technische Universität Wien, Abteilung Abfallwirtschaft und Stoffhaushalt, p 267Google Scholar
  22. Ehrig HJ, Krümpelbeck I (2001) The emission behaviour of old landfills in the aftercare phase. In: Christensen TH, Cossu R, Stegmann R (eds) Proceedings Sardinia 2001, eight international waste management and landfill symposium. IV. CISA, S. Margherita di Pula, pp 313–323Google Scholar
  23. EU (2007): Richtlinie 2007/60/EG des europäischen Parlaments und des Rates über die Bewertung und das Management von HochwasserrisikenGoogle Scholar
  24. Geller W, Ockenfeld K, Böhme M, Knöchel A (2004) Schadstoffbelastung nach dem Elbe-Hochwasser 2002. Final report of the ad-hoc-project ‘Schadstoffuntersuchungen nach dem Hochwasser vom August 2002—Ermittlung der Gefährdungspotentiale an Elbe und Mulde’. UFZ—Umweltforschungszentrum Leipzig-Halle GmbH, MagdeburgGoogle Scholar
  25. Geoland (2009) Online geo-database of the federal states in Austria,
  26. Habersack H, Moser A (2003) Ereignisdokumentation—Hochwasser August 2002, final report. University of Natural Resources and Applied Life Sciences, Vienna, pp 184Google Scholar
  27. Hydrotec (2008) Das 2D Strömungsmodell Hydro_AS-2D, Hydrotec Igenieurgesellschaft
  28. Klink RE, Ham RK (1982) Effects of moisture movement on methane production in solid waste landfill samples. Res Conserv 8:29–41CrossRefGoogle Scholar
  29. Krammer HJ, Domenig M, Striedner J, Vogel G (1992) Materialien zum Bundesabfallwirtschaftsplan (BAWP), Band 3: Kommunale Abfälle. Bundesministerium für Umwelt, Jugend und Familie, Wien, p 180Google Scholar
  30. Kylefors K, Andreas L, Lagerkvist A (2003) A comparison of small-scale, pilot-scale and large-scale tests for predicting leaching behaviour of landfilled wastes. Waste Manage 23:45–59CrossRefGoogle Scholar
  31. Laner D, Fellner J, Brunner PH, Neuhold C, Kolesar C (2008) Environmental relevance of flooded MSW landfills in Austria, In: ISWA/WMRAS, ISWA/WMRAS world congress 2008—East meets Waste, Singapore Nov 3–6Google Scholar
  32. Laner D, Fellner J, Brunner PH (2009) Flooding of municipal solid waste landfills—a long-term environmental hazard? Sci Total Environ 407(12):3674–3680CrossRefGoogle Scholar
  33. Lange G, Lechner K (1993) Gewässerregelung and Gewässerpflege—Naturnahe Ausbau und Unterhaltung von Fließgewässern. Verlag Paul Parey, 3.Auflage, Hamburg/BerlinGoogle Scholar
  34. Merz B (2006) Hochwasserrisiken—Grenzen und Möglichkeiten der Risikoabschätzung, E. Schweizerbart’sche Verlagsbuchhandlung (Näglele u. Obermiller), StuttgartGoogle Scholar
  35. Merz R, Blöschl G, Humer G, Hofer M, Hochhold A, Wührer W (2006) Hochwasserrisikoflächen Österreich (HORA)—hydrologische Arbeiten (technical report). Institut für Wasserbau und Ingenieurhydrologie, TU Wien, WienGoogle Scholar
  36. Merz R, Blöschl G, Humer G (2008) National flood discharge mapping in Austria. Nat Hazards 46:53–72CrossRefGoogle Scholar
  37. Messner F, Penning-Rowsell E, Green C, Meyer V, Tunsall S, van der Veen A (2007) Evaluating flood damages: guidance and recommendations on principles and methods, report number T09-06-01,
  38. Nachtnebel HP, Holzmann H, Neuhold C, Haberl U, Kahl B, Bichler A (2009) GEDES: Gefährdung durch Deponien und Altablagerungen im Hochwasserfall—Risikoanalyse und Minimierung—Teilbericht 2, WienGoogle Scholar
  39. Neuhold C (2010) Revised flood risk assessment: quantifying epistemic uncertainty emerging from different sources and processes. Dissertation, University of Natural Resources and Life Sciences, Vienna, AustriaGoogle Scholar
  40. Neuhold C, Nachtnebel HP (2010) Assessing flood risk associated with waste disposals: methodology, application and uncertainties. Nat Hazards. doi: 10.1007/s11069-010-9575-9
  41. Neuhold C, Stanzel P, Nachtnebel HP (2009) Incorporating river morphological changes to flood risk assessment: uncertainties, methodology and application. Nat Hazards Earth Syst Sci 9:789–799CrossRefGoogle Scholar
  42. Ockenfeld K, Böhme M, Knöchel A, Geller W (2005) Displacement of pollutants during the River Elbe flood in August 2002—introduction to special issue. Acta Hydrochim Hydrobiol 33:391–394CrossRefGoogle Scholar
  43. Prat N, Toja J, Sola C, Burgos MD, Plans M, Rieradevall M (1999) Effect of dumping and cleaning activities on the aquatic ecosystems of the Guadiamar River following a toxic flood. Sci Total Environ 1999(242):231–248CrossRefGoogle Scholar
  44. Rank G, Kardel K, Pälchen W, Greif A (2002): Schadstoffbelastungen im Mulde- und Elbe-Einzugsgebiet nach dem Augusthochwasser 2002. Statusseminar des BMBF-Ad-hoc-Verbundprojektes Schadstoffbelastung im Mulde- und Elbe-Einzugsgebiet, Freiberg, 2003, pp 114–120Google Scholar
  45. Stegmann R, Heyer KU (1995) Langfristiges Gefährdungspotential und Deponieverhalten von Ablagerungen. Statusseminar Deponiekörper, BMBFGoogle Scholar
  46. U.S. Environmetal Protection Agency (1997) Damage cases and environmental releases from mines and mineral processing sites. U.S. Environmental Protection Agency, Office of Solid Waste, Washington D.C., 1997Google Scholar
  47. Young S, Balluz L, Malilay J (2004) Natural and technologic hazardous material releases during and after natural disasters: a review. Sci Total Environ 322:3–20CrossRefGoogle Scholar
  48. Zhang Y (2006) Technical report no. NCCHE-TR-2006-03, CCHE-GUI—graphical users interface for NCCH model, user’s manual—version 3.0, NCCHE, The University of MississippiGoogle Scholar
  49. Zhang Y, Jia Y (2007) Technical report no. NCCHE-TR-2007-01, CCHE-Mesh: 2D structured generator, user’s manual—version 3.0, NCCHE, The University of MississippiGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Institute of Water Management, Hydrology and Hydraulic EngineeringUniversity of Natural Resources and Life SciencesViennaAustria

Personalised recommendations