Advertisement

Natural Hazards

, Volume 65, Issue 3, pp 1745–1764 | Cite as

Assessment of carbonaceous aerosol over Delhi in the Indo-Gangetic Basin: characterization, sources and temporal variability

  • S. Tiwari
  • A. K. Srivastava
  • D. S. Bisht
  • P. D. Safai
  • P. Parmita
Original Paper

Abstract

Semi-continuous measurements of organic carbon (OC) and elemental carbon (EC) and continuous measurements of black carbon (BC) and PM2.5 aerosols were conducted simultaneously during the winter period of 2010–2011 at Delhi, one of the polluted urban megacities in western part of the Indo-Gangetic Basin region. The average mass concentrations of OC, EC, BC and PM2.5 were about 54 ± 39, 10 ± 5, 12 ± 5 and 210 ± 146 μg m−3, respectively. Contribution of total carbonaceous aerosol mass to PM2.5 mass was found to be ~46 %. Average OC/EC ratio was found to be 5 ± 2 during the study period, suggesting the presence of secondary organic aerosols in the atmosphere over Delhi. Estimated mean secondary organic aerosol mass concentration was found to be 25 μg m−3 and varied between 14.6 (February) and 37.0 μg m−3 (December). A diurnal variation of OC and EC shows lower values during the day time and higher during the morning and night, which are highly associated with the corresponding variability in mixing layer heights. OC and EC were also found to be significantly correlated (r = 0.71) to each other, indicating their common sources. Concentrations of OC and EC were about 45 and 13 % higher during weekdays than weekends, respectively. Higher OC (67 %) and EC (53 %) were observed in the late evening during weekdays than those on weekends, which could be due to different emission sources during these two periods. The night/day ratio of EC and OC was found to be larger than 1.0, suggesting the relative accumulation of EC and OC near the surface at night hours.

Keywords

Carbonaceous aerosol Organic carbon Elemental carbon Black carbon PM2.5 Indo-Gangetic Basin 

Notes

Acknowledgments

Authors express their sincere gratitude to Prof. B. N. Goswami, Director, IITM, Pune and Dr. P. C. S. Devara, Head, PM&A, IITM for their encouragement and support during the study period.

References

  1. Ali K, Momin GA, Tiwari S, Safai PD, Chate DM, Rao PSP (2004) Fog and precipitation chemistry at Delhi, North India. Atmos Environ 38:4215–4222CrossRefGoogle Scholar
  2. Andreae MO, Gelencseŕ A (2006) Black carbon or brown carbon? The nature of light absorbing carbonaceous aerosols. Atmos Chem Phys 6:3131–3148CrossRefGoogle Scholar
  3. Arnott WP et al (2005) Towards aerosol light-absorption measurements with a 7-wavelength aethalometer: evaluation with a photoacoustic instrument and 3-wavelength nephelometer. Aerosol Sci Tech 39:17–29CrossRefGoogle Scholar
  4. Attri AK, Kumar U, Jain VK (2001) Formation of ozone by fireworks. Nature 411:1015CrossRefGoogle Scholar
  5. Awasthi A et al (2011) Study of size and mass distribution of particulate matter due to crop residue burning with seasonal variation in rural area of Punjab, India. J Environ Monit 13:1073–1081. doi: 10.1039/C1EM10019J CrossRefGoogle Scholar
  6. Babu SS, Moorthy KK (2001) Anthropogenic impact on aerosol black carbon mass concentration at a tropical coastal station: a case study. Curr Sci 81:1208–1214Google Scholar
  7. Babu SS, Moorthy KK (2002) Aerosol black carbon over tropical coastal station in India. Geophys Res Lett 29(23):2098. doi: 10.1029/2002GL015662 CrossRefGoogle Scholar
  8. Babu SS, Satheesh SK, Moorthy KK (2002) Aerosol radiative forcing due to enhanced black carbon at an urban site in India. Geophys Res Lett 29(18):1880. doi: 10.1029/2002GL015826 CrossRefGoogle Scholar
  9. Babu SS, Moorthy KK, Satheesh SK (2004) Aerosol black carbon over Arabian Sea during inter monsoon and summer monsoon seasons. Geophys Res Lett 31:L06104. doi: 10.1029/2003GL018716 CrossRefGoogle Scholar
  10. Balasubramanian R, Qian WB, Decesari S, Facchini MC, Fuzzi S (2003) Comprehensive characterization of PM2.5 aerosols in Singapore. J Geophys Res 108(D16):4523. doi: 10.1029/2002JD002517 Google Scholar
  11. Bano T, Singh S, Gupta NC, Soni K, Tanwar RS, Nath S, Arya BC, Gera BS (2011) Variation in aerosol black carbon concentration and its emission estimates at the mega-city Delhi. Int J Remote Sens 32(21):6749–6764CrossRefGoogle Scholar
  12. Bauer JJ, Yu X, Cary R, Laulainen N, Berkowitz C (2009) Characterization of the sunset semi-continuous carbon aerosol analyzer. J Air Waste Manag As 59:826–833CrossRefGoogle Scholar
  13. Bond TC, Bergstrom RW (2006) Light absorption by carbonaceous particles: an investigative review. Aerosol Sci Technol 40:27–67CrossRefGoogle Scholar
  14. Cao JJ, Lee SC, Ho KF, Zhang XY, Zou SC, Fung K, Chow JC, Watson JG (2003) Characteristics of carbonaceous aerosol in Pearl River Delta region, China during 2001 winter period. Atmos Environ 37:1451–1460CrossRefGoogle Scholar
  15. Cao JJ, Zhu CS, Chow JC, Watson JG, Han YM, Wang GH, Shen ZX, An ZS (2009) Black carbon relationships with emissions and meteorology in Xi’an, China. Atmos Res 94:194–202CrossRefGoogle Scholar
  16. Castro LM, Pio CA, Harrison RM, Smith DJT (1999) Carbonaceous aerosol in urban and rural European atmosphere: estimation of secondary organic carbon concentrations. Atmos Environ 33:2771–2781CrossRefGoogle Scholar
  17. Chow JC, Watson JG, Pritchett LC, Pierson WR, Frazier CA, Pureell RG (1993) The DRI thermal/optical reflectance carbon analysis system: descriptions in US air quality studies. Atmos Environ A27:1185–1201Google Scholar
  18. Collaud CM, Weingartner E, Apituley A, Ceburnis D, Fierz-Schmidhauser R, Flentje H, Henzing JS, Jennings SG, Moerman M, Petzold A, Schmid O, Baltensperger U (2010) Minimizing light absorption measurement artifacts of the aethalometer: evaluation of five correction algorithms. Atmos Meas Tech 3:457–474CrossRefGoogle Scholar
  19. Dumka UC, Moorthy KK, Kumar R, Hegde P, Sagar R, Pant P, Singh N, Babu SS (2010) Characteristics of aerosol black carbon mass concentration over a high altitude location in the Central Himalayas from multi-year measurements. Atmos Res 96:510–521CrossRefGoogle Scholar
  20. Dutkiewicz VA, Alvi S, Ghauri BM, Choudhary MI, Husain L (2009) Black carbon aerosols in urban air in South Asia. Atmos Environ 43:1737–1744CrossRefGoogle Scholar
  21. Ganguly D, Jayaraman A, Rajesh TA, Gadhavi H (2006) Wintertime aerosol properties during foggy and non-foggy days over urban center Delhi and their implications for shortwave radiative forcing. J Geophys Res 111:D15217. doi: 10.1029/2005JD007029 CrossRefGoogle Scholar
  22. Hansen ADA, Bodhaine BA, Dutton EG, Schnell RC (1988) Aerosol black carbon measurements at the South Pole: initial results, 1986–1987. Geophys Res Lett 15:1193–1196CrossRefGoogle Scholar
  23. Haywood JM, Shine KP (1997) The effect of anthropogenic sulfate and soot aerosol on the clear sky planetary radiation budget. Geophys Res Lett 22:603–606CrossRefGoogle Scholar
  24. He K, Yang F, Ma Y, Zhang Q, Yao X, Chan CK, Cadle S, Chan T, Mulawa P (2001) The characteristics of PM2.5 in Beijing, China. Atmos Environ 35:4959–4970CrossRefGoogle Scholar
  25. Hussain L, Dutkiewicz VA, Khan AJ, Ghauri BM (2007) Characterization of carbonaceous aerosols in urban air. Atmos Environ 41:6872–6883CrossRefGoogle Scholar
  26. Hyvärinen AP, Lihavainen H, Komppula M, Sharma VP, Kerminen VM, Panwar TS, Viisanen Y (2009) Continuous measurements of optical properties of atmospheric aerosols in Mukteshwar, northern India. J Geophys Res 114:D08207. doi: 10.1029/2008JD011489 CrossRefGoogle Scholar
  27. Hyvärinen AP, Raatikainen T, Brus D, Komppula M, Panwar TS, Hooda RK, Sharma VP, Lihavainen H (2011) Effect of the summer monsoon on aerosols at two measurement stations in Northern India—part 1: PM and BC concentrations. Atmos Chem Phys 11:8271–8282. doi: 10.5194/acp-11-8271-2011 CrossRefGoogle Scholar
  28. Intergovernmental Panel on Climate Change (IPCC) (2007) Climate change 2007: the physical science basis. In: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Chapter 2, p 129Google Scholar
  29. Jacobson MZ (2001) Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature 409:695–697CrossRefGoogle Scholar
  30. Khillare PS, Balachandran S, Meena BR (2004) Spatial and temporal variation of heavy metals in atmospheric aerosol of Delhi. Environ Monit Assess 90:1–21CrossRefGoogle Scholar
  31. Kim HJ, Liu XD, Kobayashi T, Kohyama T, Wen FQ, Romberger DJ, Conner H, Gilmour PS, Donaldson K, MacNee W, Rennard SI (2003) Ultrafine carbon black particles inhibit human lung fibroblast-mediated collagen gel contraction. Am J Respir Cell Mol Biol 28:111–121CrossRefGoogle Scholar
  32. Latha KM, Badrinath KVS (2005) Seasonal variations of black carbon aerosols and total aerosols mass concentrations over urban environment in India. Atmos Environ 39:4129–4141CrossRefGoogle Scholar
  33. Lin JJ, Tai HS (2001) Concentrations and distributions of carbonaceous species in ambient particles in Kaohsiung City, Taiwan. Atmos Environ 35:2627–2636CrossRefGoogle Scholar
  34. Lonati G, Ozgen S, Giugliano M (2007) Primary and secondary carbonaceous species in PM2.5 samples in Milan (Italy). Atmos Environ 41:4599–4610CrossRefGoogle Scholar
  35. Novakov T, Menon S, Kirchstetter TW, Koch D, Hansen JE (2005) Aerosol organic carbon to black carbon ratios: analysis of published data and implications for climate forcing. J Geophys Res 110:D21205. doi: 10.1029/2005JD005977 CrossRefGoogle Scholar
  36. Oen AMP, Schaanning M, Ruus A, Cornelissen G, Kallqvist T, Breedveld GD (2006) Predicting low biota to sediment accumulation factors of PAHs by using infinite-sink and equilibrium extraction methods as well as BC-inclusive modeling. Chemosphere 64(8):1412–1420CrossRefGoogle Scholar
  37. Pandis SN, Harley RH, Cass GR, Seinfeld JH (1992) Secondary organic aerosol formation and transport. Atmos Environ 26A:2269–2282Google Scholar
  38. Perrino C, Tiwari S, Catrambone M, Torre SD, Rantica E, Canepari S (2011) Chemical characterization of atmospheric PM in Delhi, India, during different periods of the year including Diwali festival. Atmos Pollut Res 2(4):418–427CrossRefGoogle Scholar
  39. Ram K, Sarin MM (2010) Spatio-temporal variability in atmospheric abundances of EC, OC and WSOC over northern India. J Aerosol Sci 41(1):88–98CrossRefGoogle Scholar
  40. Ram K, Sarin MM, Hegde P (2008) Atmospheric abundances of primary and secondary carbonaceous species at two high-altitude sites in India: sources and temporal variability. Atmos Environ 42:6785–6796CrossRefGoogle Scholar
  41. Ram K, Sarin MM, Tripathi SN (2010a) A 1 year record of carbonaceous aerosols from an urban site in the Indo-Gangetic Plain: characterization, sources, and temporal variability. J Geophys Res 115:D24313. doi: 10.1029/2010JD014188 CrossRefGoogle Scholar
  42. Ram K, Sarin MM, Tripathi SN (2010b) Inter-comparison of thermal and optical methods for determination of atmospheric black carbon and attenuation coefficient from an urban location in northern India. Atmos Res 97:335–342CrossRefGoogle Scholar
  43. Ramachandran S, Rajesh TA (2007) Black carbon aerosol mass concentrations over Ahmedabad, an urban location in western India: comparison with urban sites in Asia, Europe, Canada, and the United States. J Geophys Res 112:D06211. doi: 10.1029/2006JD007488 CrossRefGoogle Scholar
  44. Ramanathan V, Carmichael G (2008) Global and regional climate changes due to black carbon. Nat Geosci 1:221–227CrossRefGoogle Scholar
  45. Ramanathan V, Xu Y (2010) The Copenhagen accord for limiting global warming: criteria, constraints, and available avenues. Proc Natl Acad Sci 107(18):8055–8062CrossRefGoogle Scholar
  46. Rastogi N, Sarin MM (2009) Quantitative chemical composition and characteristics of aerosols over western India: one-year record of temporal variability. Atmos Environ 43:3481–3488CrossRefGoogle Scholar
  47. Rattigan OV, Felton HD, Bae M-S, Schwab JJ, Demerjian KL (2010) Multi-year hourly PM2.5 carbon measurements in New York: diurnal, day of week and seasonal patterns. Atmos Environ 44:2043–2053CrossRefGoogle Scholar
  48. Ravindra K, Mor S, Kaushik CP (2003) Short-term variation in air quality associated with firework events: a cases study. J Environ Monit 5:260–264CrossRefGoogle Scholar
  49. Reddy MS, Venketaraman C (2002a) Inventories of aerosols and sulphur dioxide emissions from India: I. Fossil fuel combustion. Atmos Environ 36:677–697CrossRefGoogle Scholar
  50. Reddy MS, Venketaraman C (2002b) Inventories of aerosols and sulphur dioxide emissions from India: II. Biomass combustion. Atmos Environ 36:699–712CrossRefGoogle Scholar
  51. Rehman IH, Ahmed T, Praveen PS, Kar A, Ramanathan V (2011) Black carbon emissions from biomass and fossil fuels in rural India. Atmos Chem Phys 11:7289–7299CrossRefGoogle Scholar
  52. Reisinger P et al (2008) Intercomparison of measurement techniques for black or elemental carbon under urban background conditions in wintertime: influence of biomass combustion. Environ Sci Technol 42:884–889CrossRefGoogle Scholar
  53. Rengarajan R, Sarin MM, Sudheer AK (2007) Carbonaceous and inorganic species in atmospheric aerosols during wintertime over urban and high-altitude sites in North India. J Geophys Res 112:D21307. doi: 10.1029/2006JD008150 CrossRefGoogle Scholar
  54. Ruellan S, Cachier H (2001) Characterization of fresh particulate vehicular exhausts near a Paris high flow road. Atmos Environ 35:453–468CrossRefGoogle Scholar
  55. Safai PD, Rao PSP, Momin GA, Ali K, Chate DM, Praveen PS (2004) Some observations on the characteristics of aerosols at traffic junctions in Pune City. Indian J Radio Space Phys 33:260–266Google Scholar
  56. Safai PD et al (2007) Seasonal variation of black carbon aerosols over a tropical urban city Pune, India. Atmos Environ 41:2699–2709CrossRefGoogle Scholar
  57. Safai PD et al (2009) Aerosol characteristics during winter fog at Agra, North India. J Atmos Chem 61:101–118CrossRefGoogle Scholar
  58. Saha A et al (2009) Seasonal and diurnal variations of black carbon aerosols over a Mediterranean coastal zone. Atmos Res 92:27–41. doi: 10.1016/j.atmosres.2008.07.007 CrossRefGoogle Scholar
  59. Sarakar S, Khillare PS, Jyethi DS, Hasan A, Parween M (2010) Chemical speciation of respirable suspended particulate matter during a major firework festival in India. J Hazard Mater 184:321–330CrossRefGoogle Scholar
  60. Satsangi A, Pachauri T, Singla V, Lakhani A, Kumari KM (2010) Carbonaceous aerosols at a suburban site in Indo-Gangetic plain. Indian J Radio Space Phys 39:218–222Google Scholar
  61. Sawant NK, Song AA, Cocker DDR (2004) Primary and secondary carbonaceous species in the atmosphere of Western Riverside County, California. Atmos Environ 38:1345–1355CrossRefGoogle Scholar
  62. Schmid O et al (2006) Spectral light absorption by ambient aerosols influenced by biomass burning in the Amazon Basin. I: comparison and field calibration of absorption measurement techniques. Atmos Chem Phys 6:3443–3462CrossRefGoogle Scholar
  63. Sharma S, Brook JR, Cachier H, Chow J, Gaudenzi A, Lu G (2002) Light absorption and thermal measurements of black carbon in different regions of Canada. J Geophys Res 107(D24):4771. doi: 10.1029/2002JD002496 Google Scholar
  64. Singh T, Khillare PS, Shridhar V, Agarwal T (2008) Visibility impairing aerosols in the urban atmosphere of Delhi. Environ Monit Assess 141:67–77CrossRefGoogle Scholar
  65. Snyder DC, Schauer JJ (2007) An inter-comparison of two black carbon aerosol instruments and a semi-continuous elemental carbon instrument in the urban environment. Aerosol Sci Technol 41:463–474. doi: 10.1080/02786820701222819 CrossRefGoogle Scholar
  66. Sreekanth V, Niranjan K, Madhavan BL (2007) Radiative forcing of black carbon over eastern India. Geophys Res Lett 34:L17818. doi: 10.1029/2007GL030377 CrossRefGoogle Scholar
  67. Srivastava AK et al (2011) Pre-monsoon aerosol characteristics over the Indo-Gangetic Basin: implications to climatic impact. Ann Geophys 29:789–804. doi: 10.5194/angeo-29-789-2011 CrossRefGoogle Scholar
  68. Srivastava AK, Singh S, Tiwari S, Bisht DS (2012a) Contribution of anthro-pogenic aerosols in direct radiative forcing and atmospheric heating rate over Delhi in the Indo-Gangetic Basin. Environ Sci Pollut Res 19:1144–1158. doi: 10.1007/s11356-011-0633-y CrossRefGoogle Scholar
  69. Srivastava AK, Tripathi SN, Dey S, Kanawade VP, Tiwari S (2012b) Inferring aerosol types over the Indo-Gangetic Basin from ground based sunphotometer measurements. Atmos Res 109–110:64–75CrossRefGoogle Scholar
  70. Srivastava AK, Singh S, Pant P, Dumka UC (2012c) Characteristics of black carbon over Delhi and Manora Peak-a comparative study. Atmos Sci Lett 13:223–230. doi: 10.1002/asl.386 CrossRefGoogle Scholar
  71. Stull RB (1999) An introduction to boundary layer meteorology. Springer, New York, p 620Google Scholar
  72. Sudheer AK, Sarin MM (2008) Carbonaceous aerosols in MABL of Bay of Bengal: influence of continental outflow. Atmos Environ 42:4089–4100CrossRefGoogle Scholar
  73. Tiwari S, Srivastava AK, Bisht DS, Bano T, Singh S, Behura S, Srivastava MK, Chate DM, Padmanabhamurty B (2009) Black carbon and chemical characteristics of PM10 and PM2.5 at an urban site of North India. J Atmos Chem 62:193–209. doi: 10.1007/s10874-010-9148-z CrossRefGoogle Scholar
  74. Tripathi SN, Dey S, Tare V, Satheesh SK (2005) Aerosol black carbon radiative forcing at an industrial city in northern India. Geophys Res Lett 32:L08802CrossRefGoogle Scholar
  75. Turpin BJ, Huntzicker JJ (1995) Identification of secondary aerosol episodes and quantification of primary and secondary organic aerosol concentrations during SCAQS. Atmos Environ 29:3527–3544CrossRefGoogle Scholar
  76. Turpin BJ, Lim HJ (2001) Species contributions to PM2.5 mass concentrations: revisiting common assumptions for estimating organic mass. Aerosol Sci Technol 35:602–610Google Scholar
  77. Venkatachari P, Zhou L, Hopke PK, Felton D, Rattigan OV, Schwab JJ, Demerjian KL (2006) Spatial and temporal variability of black carbon in New York City. J Geophys Res 111:D10S05. doi: 10.1029/2005JD006314
  78. Venkataraman C, Habib G, Eiguren-Fernandez A, Miguel AH, Friedlander SK (2005) Residential biofuels in South Asia: carbonaceous aerosol emissions and climate impacts. Science 307:1454–1456CrossRefGoogle Scholar
  79. Virkkula A, Makela T, Hillamo R, Yli-Tuomi T, Hirsikko A, Hameri K, Koponen IK (2007) A simple procedure for correcting loading effects of aethalometer data. J Air Waste Manage 57(10):1214–1222CrossRefGoogle Scholar
  80. Wang Y, Hopke PK, Rattigan OV, Zhu Y (2011) Characterization of ambient black carbon and wood burning particles in two urban areas. J Environ Monit 13:1919–1926CrossRefGoogle Scholar
  81. Watson JG, Judith C, Chow A (2002) Wintertime PM2.5 episode at the Fresno, CA, supersite. Atmos Environ 36:465–475CrossRefGoogle Scholar
  82. Weingartner E, Saathoff H, Schnaiter M, Streit N, Bitnar B, Baltensperger U (2003) Absorption of light by soot particles: determination of the absorption coefficient by means of aethalometers. J Aero Sci 34(10):1445–1463CrossRefGoogle Scholar
  83. Yang F, He K, Ye B, Chen X, Cha L, Cadle SH, Chan T, Mulawa PA (2005) One-year record of organic and elemental carbon in fine particles in downtown Beijing and Shanghai. Atmos Chem Phys 5:1449–1457. doi: 10.5194/acp-5-1449-2005 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • S. Tiwari
    • 1
  • A. K. Srivastava
    • 1
  • D. S. Bisht
    • 1
  • P. D. Safai
    • 2
  • P. Parmita
    • 3
  1. 1.Indian Institute of Tropical Meteorology (Branch)New DelhiIndia
  2. 2.Indian Institute of Tropical MeteorologyPuneIndia
  3. 3.S. C. P. G. CollegeBalliaIndia

Personalised recommendations