Skip to main content

Advertisement

Log in

A new approach for developing comprehensive agricultural drought index using satellite-derived biophysical parameters and factor analysis method

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

The accurate assessment of drought and its monitoring is highly depending on the selection of appropriate indices. Despite the availability of countless drought indices, due to variability in environmental properties, a single universally drought index has not been presented yet. In this study, a new approach for developing comprehensive agricultural drought index from satellite-derived biophysical parameters is presented. Therefore, the potential of satellite-derived biophysical parameters for improved understanding of the water status of pistachio (Pistachio vera L.) crop grown in a semiarid area is evaluated. Exploratory factor analysis with principal component extraction method is performed to select the most influential parameters from seven biophysical parameters including surface temperature (T s), surface albedo (α), leaf area index (LAI), soil heat flux (G o), soil-adjusted vegetation index (SAVI), normalized difference vegetation index (NDVI), and net radiation (R n). T s and G o were found as the most effective parameters by this method. However, T s, LAI, α, and SAVI that accounts for 99.6 % of the total variance of seven inputs were selected to model a new biophysical water stress index (BPWSI). The values of BPWSI were stretched independently and compared with the range of actual evapotranspiration estimated through well-known METRIC (mapping evapotranspiration at high resolution with internal calibration) energy balance model. The results showed that BPWSI can be efficiently used for the prediction of the pistachio water status (RMSE of 0.52, 0.31, and 0.48 mm/day on three image dates of April 28, July 17, and August 2, 2010). The study confirmed that crop water status is accounted by several satellite-based biophysical parameters rather than single parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allen RG (1996) Assessing integrity of weather data for use in reference evapotranspiration estimation. Irrig Drain Eng 122(2):97–106

    Article  Google Scholar 

  • Allen RG, Waters R, Tasumi M, Trezza R, Bastiaanssen WGM (2002) SEBAL – Surface energy balance algorithm for land – idaho implementation – advanced training and users manual 1.0. Idaho, USA

  • Allen R, Tasumi M, Morse A, Trezza R (2005) A Landsat-based energy balance and evapotranspiration model in Western US water rights regulation and planning. Irrig Drain Syst 19(3):251–268

    Article  Google Scholar 

  • Allen RG, Tasumi M, Morse A, Trezza R, Wright JL, Bastiaanssen W, Kramber W, Lorite I, Robison CW (2007a) Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC): applications. J Irrig Drain Eng 133(4):395–406

    Article  Google Scholar 

  • Allen RG, Tasumi M, Trezza R (2007b) Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC): model. J Irrig Drain Eng 133(4):380–394

    Article  Google Scholar 

  • Antonic O, Krizan J, Marki A, Bukovec D (2001) Spatio-temporal interpolation of climatic variables over large region of complex terrain using neural networks. Ecol Model 138(1–3):255–263

    Article  Google Scholar 

  • Bahrainy H (2003) Natural disaster management in Iran during the 1990s: need for a New Structure. Urban Plng Devel 129(3):140–160

    Article  Google Scholar 

  • Bastiaanssen WGM (1995) Regionalization of surface flux densities and moisture indicators in composite terrain. A remote sensing approach under clear skies in Mediterranean climates. Agricultural University of Wageningen, Wageningen

    Google Scholar 

  • Bastiaanssen WGM (2000) SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin, Turkey. Hydrology 229:87–100

    Article  Google Scholar 

  • Bastiaanssen WGM, Menenti M, Feddes RA, Holtslag AAM (1998) A remote sensing surface energy balance algorithm for land (SEBAL): 1. Formulation. J Hydrol 212–213(1–4):198–212

    Article  Google Scholar 

  • Besaw LE, Rizzo DM, Bierman PR, Hackett WR (2010) Advances in ungauged streamflow prediction using artificial neural networks. J Hydrol 386(1–4):27–37

    Article  Google Scholar 

  • Biggs TW, Gangadhara Rao P, Bharati L (2010) Mapping agricultural responses to water supply shocks in large irrigation systems, southern India. Agric Water Manag 97(6):924–932

    Article  Google Scholar 

  • Bordi I, Sutera A (2007) Drought monitoring and forecasting at large scale. In: Rossi G, Vega T, Bonaccorso B (eds) Methods and tools for drought anlysis and management. Springer, Netherlands, pp 3–27

  • Brown J, Wardlow B, Tadesse T, Hayes M, Reed B (2008) The vegetation drought response index (VegDRI): a new integrated approach for monitoring drought stress in vegetation. GIScience Remote Sens 45(1):16–46

    Article  Google Scholar 

  • Brutsaert W (ed) (1982) Evaporation into the atmosphere: theory, history and applications. Kluwer Academic, Boston

    Google Scholar 

  • Campbell GS, Norman JM (1998) An introduction to environmental biophysics, 2nd edition. Springer, Berlin

    Book  Google Scholar 

  • Chander G, Markham B (2003) Revised Llandsat-5 TM radiometric calibration procedures and postcalibration dynamic ranges. IEEE Transact Geosci Remote Sens 41(11):2674–2677

    Article  Google Scholar 

  • Chavez PSJ (1988) An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data. Remote Sens Environ 24(3):459–479

    Article  Google Scholar 

  • Chavez JL, Gowda PH, Howell TA, Copeland KS (2009) Radiometric surface temperature calibration effects on satellite based evapotranspiration estimation. Int J Remote Sens 30(9):2337–2354

    Article  Google Scholar 

  • Choudhury BJ, Monteith JL (1988) A four-layer model for the heat budget of homogeneous land surfaces. Q J R Meteorol Soc 114(480):373–398. doi:10.1002/qj.49711448006

    Article  Google Scholar 

  • Conrad C, Dech S, Hafeez M, Lamers J, Martius C, Strunz G (2007) Mapping and assessing water use in a Central Asian irrigation system by utilizing MODIS remote sensing products. Irrig Drain Syst 21(3):197–218

    Article  Google Scholar 

  • DeCoster J (1998) Overview of factor analysis. Stat-Help.com website. http://www.stat-help.com/notes.html. Accessed 20 April 2011

  • Domenikiotis C, Loukas A, Dalezios NR (2003) The use of NOAA/AVHRR satellite data for monitoring and assessment of forest fires and floods. Nat Hazards Earth Syst Sci 3:115–128

    Article  Google Scholar 

  • Domenikiotis C, Spiliotopoulos M, Tsiros E, Dalezios NR (2004) Early cotton production assessment in Greece based on a combination of the drought vegetation condition index (VCI) and the bhalme and mooley drought index (BMDI). Int J Remote Sens 25(23):5373–5388

    Article  Google Scholar 

  • Dracup JA, Kil Seong L, Paulson EG Jr (1980) On the definition of droughts. Water Resour Res 16(2):297–302

    Article  Google Scholar 

  • FAO (2008) A review of drought occurrence and monitoring and planning activities in the near east region. FAO Regional Office, Cairo

  • Foken F (2006) 50 Years of the Monin-Obukhov similarity theory. Bound-Layer Meteorol 119:431–447

    Article  Google Scholar 

  • Franke J, Menz G (2007) Multi-temporal wheat disease detection by multi-spectral remote sensing. Precision Agric 8(3):161–172

    Article  Google Scholar 

  • French MN, Krajewski WF, Cuykendall RR (1992) Rainfall forecasting in space and time using a neural network. J Hydrol 137(1–4):1–31

    Article  Google Scholar 

  • Goetz SJ, Fiske GJ, Bunn AG (2006) Using satellite time-series data sets to analyze fire disturbance and forest recovery across Canada. Remote Sens Environ 101(3):352–365

    Article  Google Scholar 

  • Goward SN, Markham B, Dye DG, Dulaney W, Yang J (1991) Normalized difference vegetation index measurements from the advanced very high resolution radiometer. Remote Sens Environ 35(2–3):257–277

    Article  Google Scholar 

  • Gowda P, Chavez J, Colaizzi P, Evett S, Howell T, Tolk J (2008a) ET mapping for agricultural water management: present status and challenges. Irrig Sci 26(3):223–237. doi:10.1007/s00271-007-0088-6

    Article  Google Scholar 

  • Gowda P, Chavez J, Howell T, Marek T, New L (2008b) Surface energy balance based evapotranspiration mapping in the texas high plains. Sensors 8(8):5186–5201

    Article  Google Scholar 

  • Groten SME (1993) NDVI: crop monitoring and early yield assessment of Burkina Faso. Int J Remote Sens 14(8):1495–1515

    Article  Google Scholar 

  • Huete AR (1988) A soil adjusted vegetation index (SAVI). Remote Sens Environ 25:295–309

    Article  Google Scholar 

  • Idso SB, Jackson RD, Pinter PJJ, Reginato RJ, Hatfield JL (1981) Normalizing the stress-degree-day parameter for environmental variability. Agric Meteorol 24:45–55

    Article  Google Scholar 

  • Idso S, Reginato R, Clawson K, Anderson M (1984) On the stability of non-water-stressed baselines. Agric For Meteorol 32:177–182

    Article  Google Scholar 

  • Jain A, Sudheer KP, Srinivasulu S (2004) Identification of physical processes inherent in artificial neural network rainfall runoff models. Hydrol Process 18(3):571–581. doi:10.1002/hyp.5502

    Article  Google Scholar 

  • Jain SK, Nayak PC, Sudheer KP (2008) Models for estimating evapotranspiration using artificial neural networks, and their physical interpretation. Hydrol Process 22(13):2225–2234. doi:10.1002/hyp.6819

    Article  Google Scholar 

  • Jensen JR (ed) (2005) Introductory digital image processing: a remote sensing perspective, 3rd edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Jeong D-I, Kim Y-O (2005) Rainfall-runoff models using artificial neural networks for ensemble streamflow prediction. Hydrol Process 19(19):3819–3835. doi:10.1002/hyp.5983

    Article  Google Scholar 

  • Jolliffe IT (ed) (2002) Principal component analysis. Springer series in statistics, 2nd edn. Springer, New York

    Google Scholar 

  • Jones HG (1999) Use of infrared thermometry for estimation of stomatal conductance as a possible aid to irrigation scheduling. Agric For Meteorol 95:139–149

    Article  Google Scholar 

  • Jones H, Leinonen I (2003) Thermal imaging for the study of plant water relations. J Agric Meteorol 59:205–217

    Article  Google Scholar 

  • Kisi O, Guven A (2010) Evapotranspiration modeling using linear genetic programming technique. J Irrig Drain Eng 136(10):715–723

    Article  Google Scholar 

  • Kjaersgaard JH, Allen RG, Garcia M, Kramber W, Trezza R (2009) Automated selection of anchor pixels for landsat based evapotranspiration estimation. American Society of Civil Engineers, Kansas City, Missouri

  • Kogan FN (1990) Remote sensing of weather impacts on vegetation in non-homogeneous areas. Int J Remote Sens 11(8):1405–1419

    Article  Google Scholar 

  • Kogan FN (1995a) Application of vegetation index and brightness temperature for drought detection. Adv Space Res 15(11):91–100

    Article  Google Scholar 

  • Kogan FN (1995b) Droughts of the late 1980s in the United States as derived from NOAA polar-orbiting satellite data. Bull Am Meteorol Soc 76(5):655–666

    Article  Google Scholar 

  • Konno H, Takaya Y (2008) Multi-step methods for choosing the best set of variables in regression analysis. Comput Optim Appl 46(3):417–426. doi:10.1007/s10589-008-9193-6

    Article  Google Scholar 

  • Kumar M, Raghuwanshi N, Singh R (2010) Artificial neural networks approach in evapotranspiration modeling: a review. Irrig Sci 29(1):11–25. doi:10.1007/s00271-010-0230-8

    Article  Google Scholar 

  • Landeras G, Ortiz-Barredo A, Lopez JJ (2009) Forecasting weekly evapotranspiration with ARIMA and artificial neural network models. J Irrig Drain Eng 135(3):323–334

    Article  Google Scholar 

  • Lianyou L (2007) Backgroud paper on drought: an assessment of Asian and pacific progress (trans: on AatPftssotC, Development S). Jakarta

  • Lin ML, Cao Y, Juan CH, Chen CW, Hsueh IC, Wang QB, Lee YT (2008) Monitoring drought dynamics in the ejin oasis using drought indices from modis data. In: International geoscience and remote sensing symposium (IGARSS)

  • Liu L, Xiang D, Dong X, Zheng Z (2008) Improvement of the drought monitoring model based on the cloud parameters method and remote sensing data. In: Paper presented at the international workshop on knowledge discovery and data mining, Australia, 23–24 Jan

  • Markham BL, Barker JL (1986) Landsat MSS and TM post calibration dynamic ranges, exoatmospheric reflectances and at-satellite temperatures, EOSAT landsat technical notes, vol 1

  • Martí P, Gonza’lez-Altozano P, Gasque Ma (2011) Reference evapotranspiration estimation without local climatic data. Irrig Sci 29(6):479–495

    Google Scholar 

  • McKee TB, Doesken NJ, Kleist J (1993) The relationship of drought frequency and duration to time scales. In: Paper presented at the proceedings of the 8th conference of applied climatology, Anaheim, CA, 17–22 Jan

  • Mendicino G, Senatore A, Versace P (2008) A groundwater resource index (GRI) for drought monitoring and forecasting in a mediterranean climate. J Hydrol 357(3–4):282–302

    Article  Google Scholar 

  • Meyer SJ (1993) A crop specific drought index for corn I. Model development and validation. Agron J 2(85):388–395

    Article  Google Scholar 

  • Minns AW, Hall MJ (1996) Artificial neural networks as rainfall-runoff models. Hydrol Sci J 41(3):399–417

    Article  Google Scholar 

  • Narasimhan B, Srinivasan R (2005) Development and evaluation of soil moisture deficit index (SMDI) and evapotranspiration deficit index (ETDI) for agricultural drought monitoring. Agric For Meteorol 133(1–4):69–88

    Article  Google Scholar 

  • Okamoto K, Yamakawa S, Kawashima H (1998) Estimation of flood damage to rice production in North Korea in 1995. Int J Remote Sens 19(2):365–371

    Article  Google Scholar 

  • Parasuraman A, Grewal D, Krishnan R (eds) (2004) Marketing research. Houghton Mifflin Company, New York

    Google Scholar 

  • Paulson CA (1970) The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J Appl Meteorol 9:857–861

    Article  Google Scholar 

  • Rahimikhoob A (2009) Estimation of evapotranspiration based on only air temperature data using artificial neural networks for a subtropical climate in Iran. Theoret Appl Climatol 101(1):83–91. doi:10.1007/s00704-009-0204-z

    Article  Google Scholar 

  • Rahimzadeh Bajgiran P, Darvishsefat AA, Khalili A, Makhdoum MF (2008) Using AVHRR-based vegetation indices for drought monitoring in the Northwest of Iran. J Arid Environ 72(6):1086–1096

    Article  Google Scholar 

  • Ramos JG, Cratchley CR, Kay JA, Casterad MA, Martnez-Cob A, Domnguez R (2009) Evaluation of satellite evapotranspiration estimates using ground-meteorological data available for the Flumen District into the Ebro Valley of N.E. Spain. Manage 96(4):638–652

    Google Scholar 

  • Senkal O, Kuleli T (2009) Estimation of solar radiation over Turkey using artificial neural network and satellite data. Appl Energ 86(7–8):1222–1228

    Article  Google Scholar 

  • Smith DMS, McKeon GM (1998) Assessing the historical frequency of drought events on grazing properties in Australian rangelands. Agric Syst 57(3):271–299

    Article  Google Scholar 

  • Strobl RO, Forte F (2007) Artificial neural network exploration of the influential factors in drainage network derivation. Hydrol Process 21(22):2965–2978. doi:10.1002/hyp.6506

    Article  Google Scholar 

  • Tabachnick BG, Fidell LS (eds) (2007) Using multivariate statistics. F I F T H. Pearson Education, Boston

    Google Scholar 

  • Tasumi M (2003) Progress in operational estimation of regional evapotranspiration using satellite imagery. University of Idaho, Idaho

    Google Scholar 

  • Tasumi M, Allen RG, Trezza R, Wright JL (2005a) Satellite-based energy balance to assess within-population variance of crop coefficient curves. J Irrig Drain Eng 131(1):94–109

    Article  Google Scholar 

  • Tasumi M, Trezza R, Allen R, Wright J (2005b) Operational aspects of satellite-based energy balance models for irrigated crops in the semi-arid U.S. Irrig Drain Syst 19(3):355–376

    Article  Google Scholar 

  • Tasumi M, Allen RG, Trezza R (2008) At-surface reflectance and albedo from satellite for operational calculation of land surface energy balance. J Hydrol Eng 13(2):51–63. doi:10.1061/(ASCE)1084-0699(2008)13:2(51)

  • Tsakiris G, Pangalou D (2009) Drought characterisation in the mediterranean. In: Iglesias A, Garrote L, Cancelliere A, Cubillo F, Wilhite DA (eds) Coping with drought risk in agriculture and water supply systems. Springer, Netherlands, pp 69–80

  • Tucker CJ (1979a) Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ 8(2):127–150

    Article  Google Scholar 

  • Tucker CJ (1979b) Red and photographic infrared linear combinations formonitoring vegetation. Remote Sens Environ 8:127–150

    Article  Google Scholar 

  • The ASCE standardized reference evapotranspiration equation (2004) Environmental and water resources institute of the ASCE, Report by the task committee on standardization of reference evapotranspiration. http://www.kimberly.uidaho.edu/water/asceewri

  • UN/ISDR (2007) Drought risk reduction framework and practices, Contributing to the implementation of the Hyogo framework for action. United Nations International Strategy for Diaster Reduction, Geneva

  • Understanding and Defining Drought (2009) University of Nebraska. http://drought.unl.edu/whatis/concept.htm. Accessed 6 Aug 2009

  • Vogt JV, Soma F (eds) (2000) Drought and drought mitigation in Europe. Kluwer Academic Publisher, Dodrecht

    Google Scholar 

  • Walter IA, Allen RG, Elliott I, R., Brown ME, Jensen DP, Mecham B, Howell TA, Snyder R, Eching S, Spofford T, Hattendorf M, Martin D, Cuenca RH, Wright JL (2002) ASCE, Standardized reference evapotranspiration equation

  • Wang Q, Watanabe M, Hayashi S, Murakami S (2003) Using NOAA AVHRR data to assess flood damage in China. Environ Monit Assess 82(2):119–148

    Article  Google Scholar 

  • Webb EK (1970) Profile relationships: the log-linear range, and extension to strong stability. Q J Royal Meteorol Soc 96:67–90

    Article  Google Scholar 

  • Wilhite DA (2009) Drought monitoring as a component of drought preparedness planning. In: Iglesias A, Garrote L, Cancelliere A, Cubillo F, Wilhite DA (eds) Coping with drought risk in agriculture and water supply systems. Springer, Netherlands, pp 3–19

  • Wilhite D, Svoboda M, Hayes M (2007) Understanding the complex impacts of drought: a key to enhancing drought mitigation and preparedness. Water Resour Manage 21(5):763–774

    Article  Google Scholar 

  • Wu H, Wilhite D (2004) An operational agricultural drought risk assessment model for Nebraska, USA. Nat Hazards 33(1):1–21

    Article  Google Scholar 

  • Yang R, Friedl MA (2003) Determination of roughness lengths for heat and momentum over Boreal Forests. Bound-Layer Meteorol 107(3):581–603. doi:10.1023/a:1022880530523

    Article  Google Scholar 

  • Yang C–C, Tan CS, Prasher SO (2000) Artificial neural networks for subsurface drainage and subirrigation systems in Ontario, Canada. JAWRA J Am Water Res As 36(3):609–618. doi:10.1111/j.1752-1688.2000.tb04291.x

    Article  Google Scholar 

  • Zhang P, Anderson B, Tan B, Huang D, Myneni R (2005) Potential monitoring of crop production using a satellite-based climate-variability impact index. Agric For Meteorol 132(3–4):344–358

    Article  Google Scholar 

Download references

Acknowledgments

The authors greatly appreciate for technical guidance and providing the program for calculating atmospheric stability correction by Prof. Dr. Christopher Conrad (Universität Würzburg). Also, we acknowledge the World Bank and the Robert S. McNamara Fellowship Program for providing the financial support and agricultural organization of Yazd city for technical support during the field measurements. In addition, the authors would like to thank the University of Idaho and the National Aeronautics and Space Administratio n (NASA) team for providing REF-ET software and free Landsat TM data, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hossein Mokhtari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mokhtari, M.H., Adnan, R. & Busu, I. A new approach for developing comprehensive agricultural drought index using satellite-derived biophysical parameters and factor analysis method. Nat Hazards 65, 1249–1274 (2013). https://doi.org/10.1007/s11069-012-0408-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-012-0408-x

Keywords

Navigation