Advertisement

Natural Hazards

, Volume 65, Issue 1, pp 915–945 | Cite as

Risk reduction at the “Last-Mile”: an attempt to turn science into action by the example of Padang, Indonesia

  • H. Taubenböck
  • N. Goseberg
  • G. Lämmel
  • N. Setiadi
  • T. Schlurmann
  • K. Nagel
  • F. Siegert
  • J. Birkmann
  • K.-P. Traub
  • S. Dech
  • V. Keuck
  • F. Lehmann
  • G. Strunz
  • H. Klüpfel
Review Paper

Abstract

More than ever before, the last decade revealed the immense vulnerability of the world’s cities to natural hazards. Neither the tsunami in the Indian Ocean in 2004, the hurricane Katrina in 2005, the cyclone Nargis in 2008 nor the earthquakes in Sichuan in 2008 or in Haiti 2010 found the people, the city administrations or the national or international organizations well prepared in the advent of anticipated but to a large extent disregarded natural disasters. It is evident that the lack of tailor-made disaster management plans and standard operational procedures are often the crucial point in proper risk reduction approaches. This study presents an approach to transfer knowledge of an extensive multidisciplinary scientific study on risk identification into recommendations for risk reduction strategies. The study has been conducted by means of a combination of experts from different scientific communities coming from civil and coastal engineering, remote sensing, social sciences, evacuation modelling and capacity development. The paper presents the results of this research approach and interweaves key findings with recent experiences from an eyewitness on a previous hazard event. Thus, necessary tsunami hazard and vulnerability information as well as valuable insights into preparedness activities have been derived for initiating updated infrastructural designs and practical recommendations for emergency management as well as strategic spatial planning activities at the local scale. The approach was applied in the context of tsunami early warning and evacuation planning in the coastal city of Padang, Western Sumatra, Republic of Indonesia.

Keywords

Risk Vulnerability Interdisciplinary research Engineering Remote sensing Evacuation modelling Tsunami Natural hazards 

Notes

Acknowledgments

The authors would like to thank the DFG/BMBF special Programme “Geotechnologies”—Early Warning Systems in Earth Management. Sponsorship Code: 03G0643A-E. We would also like to thank our partners in Padang Indonesia from Andalas University and the city municipality of Padang.

References

  1. Birkmann J, Dech S, Goseberg N, Lämmel G, Moder F, Nagel K, Oczipka M, Schlurmann T, Setiadi N, Siegert F, Strunz G, Taubenböck H (2008a) Numerical Last-Mile tsunami early warning and evacuation information system. In: International conference on tsunami warning (ICTW), Bali, Indonesia, 12 pp, 12–14 Nov 2008Google Scholar
  2. Birkmann J, Setiadi N, Gebert N (2008b) Socio-economic vulnerability assessment at the local level in context of tsunami early warning and evacuation planning in the city of Padang, West Sumatra. Paper for international conference on tsunami warning, Nusa Dua, Indonesia, 12–14 Nov 2008Google Scholar
  3. Börner A, Hirschmüller H, Scheibe K, Suppa M, Wohlfeil J (2008) MFC—a modular line camera for 3D world modeling. In: Lecture Notes in Computer Science, BerlinGoogle Scholar
  4. Borrero JC, Sieh K, Chlieh M, Synolakis CE (2006) Tsunami inundation modeling for western Sumatra. Proc Natl Acad Sci USA 103:19673–19677. PNAS online publication, available at http://www.pnas.org Google Scholar
  5. Brune S, Babeyko AY, Gaedicke C, Ladage S (2010) Hazard assessment of underwater landslide-generated tsunamis: a case study in the Padang region, Indonesia. Nat Hazards 53:205–218CrossRefGoogle Scholar
  6. Chlieh M, Avouac JP, Sieh K, Natawidjaja DH, Galetzka J (2006) Heterogeneous coupling of the Sumatran megathrust constrained by geodetic and paleogeodetic measurements. Geophys Res 2008:113Google Scholar
  7. Flötteröd G, Lämmel G (2010) Evacuation simulation with limited capacity sinks. VSP working paper (10-04). http://svn.vsp.tu-berlin.de/repos/public-svn/publications/vspwp/2010/10-04/
  8. Geiß C, Taubenböck H (2012) Remote Sensing contributing to assess earthquake risk: from a literature review towards a road map. Nat Hazards. doi: 10.1007/s11069-012-0322-2
  9. GeoHazards International (GHI) (2012) Saving more than 100,000 lives through a simple, innovative solution: tsunami evacuation raised earth park. http://www.swissre.com/media/news_releases/pr_20100930_padang_terep_project.html
  10. Goseberg N, Schlurmann T (2009) Enhanced hazard mapping on a medium-resolved numerical grid for the city of Padang, West Sumatra. J Ship Technol 5(2):13–21Google Scholar
  11. Goseberg N, Stahlmann A, Schimmels S, Schlurmann T (2009) Highly-resolved numerical modeling of tsunami run-up and inundation scenario in the city of Padang, West Sumatra. In: Proceedings of the 31st international conference on coastal engineering (in press)Google Scholar
  12. Goto C, Ogawa Y, Shuto N, Imamura N (1997) IOC manualGoogle Scholar
  13. Hamacher HW, Tufekci S (1987) On the use of lexicographical min cost flows in evacuation modeling. Nav Res Logist 34:487–503CrossRefGoogle Scholar
  14. Imamura F, Muhari A, Mas E, Pradono MH, Post J, Sugimoto M (2012) Tsunami disaster mitigation by integrating comprehensive countermeasures in Padang City, Indonesia. J Disaster Res 7(1):48–64Google Scholar
  15. Jarvis J, Ratliff H (1982) Some equivalent objectives for dynamic network flow problems. Manag Sci 28:106–108CrossRefGoogle Scholar
  16. Karvonen T, Hepojoki A, Kotola J, Huhta H-K (2000) RESCDAM—the use of physical models in dam-break flood analysis. Final report of Helsinki University of TechnologyGoogle Scholar
  17. Konca OA, Avouac J-P, Sladen A, Meltzner AJ, Sieh K, Fang P, Li Z, Galetzka J, Genrich J, Chlieh M, Natawidjaja DH, Bock Y, Fielding EJ, Ji C, Helmberger DV (2008) Partial rupture of a locked patch of the Sumatra megathrust during the 2007 earthquake sequence. Nature 456(7222):631–635CrossRefGoogle Scholar
  18. Lämmel G, Flötteröd G (2009b) Towards system optimum: finding optimal routing strategies in time-dependent networks for large-scale evacuation problems. In: Mertsching B, Hund M, Aziz Z (eds) KI 2009, LNCS (LNAI), vol 5903. Springer, Berlin, pp 532–539Google Scholar
  19. Lämmel G, Klüpfel H, Nagel K (2009a) The MATSim network flow model for traffic simulation adapted to large-scale emergency egress and an application to the evacuation of the Indonesian City of Padang in case of a tsunami warning, pedestrian behavior, Emerald Group Publishing Limited, pp 245–265Google Scholar
  20. Lämmel G, Grether D, Nagel K (2010a) The representation and implementation of time-dependent inundation in large-scale microscopic evacuation simulations. Transp Res Part C Emerg Technol 18:84–98CrossRefGoogle Scholar
  21. Lämmel G, Rieser M, Nagel K, Taubenböck H, Strunz G, Goseberg N, Schlurmann T, Klüpfel H, Setiadi N, Birkmann J (2010b) Emergency preparedness in the case of a tsunami—evacuation analysis and traffic optimization for the Indonesian City of Padang, pedestrian and evacuation dynamics 2008. Springer, Berlin, pp 159–170Google Scholar
  22. Lämmel G, Rieser M, Nagel K (2010c) Large scale microscopic evacuation simulation, pedestrian and evacuation dynamics 2008. Springer, Berlin, pp 503–508Google Scholar
  23. Lämmel G, Klüpfel H, Nagel K (2011) Risk minimizing evacuation strategies under uncertainty. Pedestrian and evacuation dynamics 2010. Springer, New York, pp 287–296Google Scholar
  24. Lauterjung J, Rudloff A (2005) GITEWS—the German Indonesian tsunami earlywarning system. EOS Trans Am Geophys Union 86(52), Fall Meet. SupplGoogle Scholar
  25. Mas E, Imamura F, Koshimura S (2012) Tsunami departure curves for evacuation simulation. A new approach to model the human behavior in tsunami evacuation. http://www.tsunami.civil.tohoku.ac.jp/hokusai3/J/people/member/erick/Papers/O10.pdf
  26. McCloskey J, Antonioli A, Piatanesi A, Sieh K, Steacy S, Nalbant S, Cocco M, Giunchi C, Huang J, Dunlop P (2008) Tsunami threat in the Indian Ocean from a future megathrust earthquake west of Sumatra. Earth Planet Sci Lett 265(1–2):61–81CrossRefGoogle Scholar
  27. McCloskey J, Lange D, Tilmann F, Nalbant S, Bell A, Hillman Natawidjaja D, Rietbrock A (2010) The September 2009 Padang earthquake. Nat Geosci, CorrespondenceGoogle Scholar
  28. Moder F, Oczipka M, Siegert F, Lehmann F, Djajadihardaja YS, Klein R, Wahl R (2008) Last-Mile—large-scale topographic mapping of densely populated coasts in support of risk assessment of tsunami hazards. International conference on tsunami warning, Bali, Indonesia, 12–14 Nov 2008Google Scholar
  29. Münich J, Taubenböck H, Stempniewski L, Dech S, Roth A (2006) Remote sensing and engineering: an interdisciplinary approach to assess vulnerability in urban areas. First European conference on earthquake engineering and seismology. Geneva, Switzerland, p 10Google Scholar
  30. Nash J (1951) Non-cooperative games. Ann Math 54(2):286–295CrossRefGoogle Scholar
  31. Nielsen O, Roberts S, Gray D, McPherson A, Hitchman A (2005) Hydrodynamic modelling of coastal inundation. In MODSIM 2005 international congress on modelling and simulation, pp 518–523Google Scholar
  32. Schiermeier Q (2009) Tsunami watch. Nat News 426(7276):968–969CrossRefGoogle Scholar
  33. Schlurmann T, Siebert M (2010) The capacity building programmes of GITEWS—visions, goals, lessons learned, and re-iterated needs and demands. In: Rudloff A, Lauterjung J, Münch U (eds) Natural Hazards and Earth System Sciences (NHESS), special issue: the GITEWS project (German-Indonesian Tsunami Early Warning System)Google Scholar
  34. Schlurmann T, Kongko W, Goseberg N, Natawidjaja DH, Sieh KE (2010) Near-field tsunami hazard map Padang, West Sumatra: Utilizing high resolution geospatial data and reseasonable source scenarios. In: Proceedings of 32nd international conference on coastal engineering (ICCE2010), American Society of Civil Engineers (ASCE) (in press)Google Scholar
  35. Schneider M, Klein R (2007) Efficient and accurate rendering of vector data on virtual landscapes. J WSCG 15(1–3):59–64Google Scholar
  36. Schneider M, Klein R (2008) Enhancing textured digital elevation models using photographs. In: Proceedings of the fourth international symposium on 3D data processing, visualization and transmission (3DPVT’08)Google Scholar
  37. Setiadi N (2011a) Daily mobility—excursus—Padang, Indonesia. In: Chang Seng SD, Birkmann J (eds) Migration and global environmental change: SR4b: early warning in the context of environmental shocks: demographic change, dynamic exposure to hazards, and the role of EWS in migration flows and human displacement, Foresight Project, Government Office for Science, pp 35–38Google Scholar
  38. Setiadi N (2011b) Establishment of an effective people-centered tsunami early warning by understanding people’s behavior and needs: case study of Padang, West Sumatra. In: Anwar HZ, Harjono H (eds) Perspektif Terhadap Kebencanaan dan Lingkungan di Indonesia: Studi kasus dan pengurangan dampak risikonya. LIPI, Bandung, pp 35–52. ISBN: 978-602-99893-0-4Google Scholar
  39. Setiadi N, Birkmann J (2010) Arbeitspaket 1000: “socio-economic vulnerability indicators” im Rahmen Last-Mile—Evacuation Projekts. United Nations University, Institute for Environment and Human Security (UNU-EHS)Google Scholar
  40. Setiadi N, Taubenböck H, Raupp S, Birkmann J (2010) Integrating socio-economic data in spatial analysis: an exposure analysis method for planning urban risk mitigation. 15th international conference on urban planning and regional development in the information society (REALCORP), Vienna, Austria. GeoMultimedia 2010Google Scholar
  41. Sieh K (2006) Sumatran megathrust earthquakes: from science to saving lives. Philos Trans R Soc 364(1845):1947–1963CrossRefGoogle Scholar
  42. Sieh K, Natawidjaja DH, Meltzner AJ, Shen C-C, Cheng H, Li K-S, Suwargadi BW, Galetzka J, Philibosian B, Edwards RL (2008) Earthquake supercycles inferred from sea-level changes recorded in the corals of west Sumatra. Science 322(5908):1674–1678CrossRefGoogle Scholar
  43. Sorensen H (2000) Hazard warning systems: review of 20 years of progress. Nat Hazards Rev 1(2):119–125CrossRefGoogle Scholar
  44. Spahn H, Hoppe M, Vidiarna HD, Usdianto B (2010) Experience from three years of local capacity development for tsunami early warning in Indonesia: challenges, lessons and the way ahead. Nat Hazards Earth Syst Sci 10:1411–1429CrossRefGoogle Scholar
  45. Subarya C, Chlieh M, Prawirodirdjo L, Avouac J-P, Bock Y, Sieh K, Meltzner AJ, Natawidjaja DH, McCaffrey R (2006) Plate-boundary deformation associated with the great Sumatra–Andaman earthquake. Nature 440(7080):46–51CrossRefGoogle Scholar
  46. Taubenböck H (2011) The vulnerability of a city—diagnosis from a bird’s eye view. In: Mörner N-A (ed) The tsunami threat—research and technology, pp 107–128. ISBN: 978-953-307-552-5Google Scholar
  47. Taubenböck H, Roth A, Dech S (2007) Linking structural urban characteristics derived from high resolution satellite data to population distribution. In: Coors, Rumor, Fendel & Zlatanova (Eds.) Urban and regional data management. Taylor & Francis Group, London, pp 35–45. ISBN 978-0-41544059-2Google Scholar
  48. Taubenböck H, Goseberg N, Setiadi N, Lämmel G, Moder F, Oczipka M, Klüpfel H, Wahl R, Schlurmann T, Strunz G, Birkmann J, Nagel K, Siegert F, Lehmann F, Dech S, Gress A, Klein R (2009a) Last-Mile preparation for a potential disaster—interdisciplinary approach towards tsunami early warning and an evacuation information system for the coastal city of Padang, Indonesia. Nat Hazards Earth Syst Sci 9:1509–1528CrossRefGoogle Scholar
  49. Taubenböck H, Wurm M, Setiadi N, Gebert N, Roth A, Strunz G, Birkmann J, Dech S (2009b) Integrating remote sensing and social science—the correlation of urban morphology with socioeconomic parameters. In: Urban remote sensing joint event, Shanghai, China, p 7Google Scholar
  50. Taubenböck H, Esch T, Wurm M, Roth A, Dech S (2010) Object-based feature extraction using high spatial resolution satellite data of urban areas. J Spat Sci 55(1):117–133CrossRefGoogle Scholar
  51. Wahl R, Massing M, Degener P, Guthe M, Klein R (2004) Scalable compression and rendering of textured terrain data. J WSCG 12(3):521–528Google Scholar
  52. Wahl R, Schnabel R, Klein R (2008) From detailed digital surface models to city models using constrained simplification. Photogramm Fernerkun 3:207–215Google Scholar
  53. Wurm M, Taubenböck H, Schardt M, Esch T, Dech S (2011) Object-based image information fusion using multisensor earth observation data over urban areas. Int J Image Data Fusion 2(2):121–147CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • H. Taubenböck
    • 1
  • N. Goseberg
    • 2
  • G. Lämmel
    • 3
  • N. Setiadi
    • 4
  • T. Schlurmann
    • 2
  • K. Nagel
    • 3
  • F. Siegert
    • 5
  • J. Birkmann
    • 4
  • K.-P. Traub
    • 6
  • S. Dech
    • 1
  • V. Keuck
    • 5
  • F. Lehmann
    • 7
  • G. Strunz
    • 1
  • H. Klüpfel
    • 8
  1. 1.German Remote Sensing Data Center (DFD)German Aerospace Center (DLR)OberpfaffenhofenGermany
  2. 2.Franzius-Institut für Wasserbau und KüsteningenieurwesenLeibniz University HannoverHannoverGermany
  3. 3.Verkehrssystemplanung und Verkehrstelematik, Institut für Land- und Seeverkehr, Fakultät V, Verkehr- und MaschinensystemeTechnical University BerlinBerlinGermany
  4. 4.Institute for Environment and Human Security (UNU-EHS)United Nations UniversityBonnGermany
  5. 5.Remote Sensing Solutions GmbH (RSS)BaierbrunnGermany
  6. 6.Lab for Geoinformatics and GeovisualizationHafenCity University HamburgHamburgGermany
  7. 7.Optical Information Systems (OS)German Aerospace Center (DLR)Berlin-AdlershofGermany
  8. 8.TraffGo HT GmbHDuisburgGermany

Personalised recommendations