Natural Hazards

, Volume 68, Issue 3, pp 1271–1289 | Cite as

Optical satellite imagery for quantifying spatio-temporal dimension of physical exposure in disaster risk assessments

Original Paper


This work addresses the use of remote sensing imagery to quantify the built environment and its spatial and temporal changes. It identifies building footprint map, building location map and built-up area map as information products that can be used to quantify physical exposure, one of the variables required in disaster risk assessments. The paper also reviews urban land use maps and urban classes in land cover maps as potential source for deriving exposure information. The paper focuses on the latest generation of satellite-borne remote sensing imaging systems that deliver high-resolution optical imagery able to resolve buildings and other three-dimensional man-made constructions. This work also reviews the semantics, the spatial unit used to define physical exposure, image processing procedures and change techniques.


Remote sensing Built-up mapping Exposure Building stock Urban Change detection 


  1. Angiuli E, Trianni G (2012) A robust methodology for global urban mapping applying the normalized difference spectral index to landsat data, submitted to Remote Sensing of EnvironmentGoogle Scholar
  2. Bal IE, Bommer J, Stafford P, Crowley H, Pinho R (2010) The influence of geographical resolution of urban exposure data in an earthquake loss model for Istanbul. Earthq Spectra 26L:619–634CrossRefGoogle Scholar
  3. Blockley D, Agarwal J, Pinto J, Woodman N (2002). Structural vulnerability, reliability and risk. Prog Struct Eng Mater 4:203–212. Google Scholar
  4. Brunner D, Lemoine G, Bruzzone L (2010) Earthquake damage assessment of buildings using VHR Optical and SAR imagery. IEEE Trans Geosci Remote Sens 48(5):2403–2420CrossRefGoogle Scholar
  5. Bustos C, Campanella O, Kpalma K, Magnago F, Ronsin J (2011) A method for change detection with multi-temporal satellite images based on principal component analysis. 6th International workshop on the analysis of multi-temporal remote sensing images (Multi-Temp), 12–14 July 2011, pp 197–200Google Scholar
  6. Calvi G, Pinho R, Magenes G, Bommer J, Restrepo-Velez L, Crowley H (2006) Development of seismic vulnerability assessment methodologies over the past 30 years. ISET J Earthq Technol 43:75–104Google Scholar
  7. Comber A, Fisher R, Wadsworth R (2005) You know what land cover is but does anyone else? … an investigation into semantic and ontological confusion. Int J Remote Sens 26:223–228CrossRefGoogle Scholar
  8. Corban C, Saito K, Dell’Oro L, Bjorgo E, Gill S, Piard B, Huyck C, Kemper T, Lemoine G, Spence R, Shankar R, Senegas O, Ghesqiere F, Lalllemant D, Evans G, Gartley R, Toro J, Ghosh S, Svekla W, Adamas B, Eguchi R (2011) A comprehensive analysis of building damage in the 12 January 2010 Mw7 Haiti earthquake using high resolution satellite and aerial imagery. Photogramm Eng Remote Sens 11:997–1009Google Scholar
  9. Deichmann U, Ehrlich D, Small C, Zeug G (2011) Using high resolution satellite data for the identification of urban natural disaster risk. World Bank Report. Accessed 13 Jan 2012
  10. Dong P, Ramesh S, Nepali A (2010) Evaluation of small-area population estimation using LiDAR, Landsat TM and parcel data. Int J Remote Sens 31(21):5571–5586CrossRefGoogle Scholar
  11. Doxani G, Karantzalos K, Tsakiri-Strati M (2010) Automatic change detection in urban areas under a scale-space objected-oriented classification framework. Proceedings of GEOgraphic Object-Based Image Analysis (GEOBIA), Ghent, 29 June–2 July 2010. Accessed 10 Aug 2012
  12. EEA (2000) European environmental agency. CORINE technical guide: Addendum 2000. Accessed 13 Jan 2012
  13. EEA (2011a) Urban morphological zones changes 2000–2006 (UMZ2000-2006) - F3v0. Accessed 3 July 2012
  14. EEA (2011b) Urban morphological zones changes 1990–2000 (UMZ1990-2000) - F3v0. Accessed 3 July 2012
  15. Ehrlich D, Bielski C (2011) Texture based change detection of built up on SPOT panchromatic imagery using PCA. Joint Urban Remote Sens Event, 11–13 April 2011. MuenchenGoogle Scholar
  16. Ehrlich D, Lang S, Laneve G, Mubareka S, Schneiderbauer S, Tiede D (2009a) Can earth observation help to improve information on population? Indirect population estimations from EO derived geo-spatial data: contribution from GMOSS. In: Jasani B, Pesaresi M, Schneiderbauer S, Zeug G (eds) Remote sensing from space-supporting international peace and security. Springer, Berlin, pp 211–237CrossRefGoogle Scholar
  17. Ehrlich D, Moula M, Louvrier C, Gerhardinger A (2009b) Quantifying the building stock for disaster risk assessment in the Caribbean region. In: Proceedings from the 33rd international symposia on remote sensing of environment, Sustaining the Millennium Development Goals, vol. 1–2, May 2009Google Scholar
  18. Ehrlich D, Zeug G, Gallego J, Gerhardinger A, Caravaggi I, Pesaresi M (2010) Quantifying the building stock from optical high resolution satellite imagery for assessing disaster risk. Geocarto Int 25(4):281–293CrossRefGoogle Scholar
  19. Erberik M, Cullu S (2006) Assessment of seismic fragility curves for low-and mid-rise reinforced concrete frame building using Duzce field database. Advance Earthq Eng Urban Risk Reduct 66:151–166CrossRefGoogle Scholar
  20. FEMA (2003) Federal emergency management agency. HAZUS—MH MR3. Multi-hazard loss estimation methodology, Washington, DCGoogle Scholar
  21. Freire S, Santos T, Navarro A, Soares F, Dinis J, Afonso N, Fonseca A, Tenedorio J A (2010) Extraction of buildings from QuickBird imagery for municipal planning purposes: quality assessment considering existing mapping standards. In: 30 EARsel symposium: remote sensing for science, education and culture, Paris, FranceGoogle Scholar
  22. Gamba P, Dell’Acqua F, Lisini G (2009) BREC: the Built-up area RECognition tool. Joint Urban Remote Sens Event, 22–24 May 2009, ShanghaiGoogle Scholar
  23. Gao J (2009) Digital analysis of remotely sensed imagery. McGraw-Hill, New York, pp 645Google Scholar
  24. Giada S, DeGroeve T, Ehrlich D, Soille P (2003) Information extraction from very high resolution satellite images over Lukole refugee camp, Tanzania. Int J Remote Sens 24:4251–4266CrossRefGoogle Scholar
  25. Gianinetto M (2008) Updating large scale topographic databases in Italian Urban areas with submeter QuickBird Images. Int J Navig Obs. Accessed 13 Jan 2012
  26. Griffiths P, Hostert P, Gruebner O, van der Linden S (2010) Mapping megacity growth with multi-sensor data. Remote Sens Environ 114:426–439CrossRefGoogle Scholar
  27. Gueguen, L, Pesaresi M, Ehrlich D, Lu L (2011) Urbanization analysis by mutual information based change detection between SPOT 5 panchromatic images. Multitemp2011, 6th international workshop on the analysis of multi-temporal remote sensing images, 12–14 July 2011, TrentoGoogle Scholar
  28. Gueguen L, Pesaresi M, Gerhardinger A, Soille P (2012) Characterizing and counting roofless buildings in very high resolution optical images. IEEE Geosci Remote Sens Lett 9:114–118CrossRefGoogle Scholar
  29. Guindon B, Zhang Y, Dillabaugh C (2004) Landsat TM urban mapping based on a combined spectral-spatial methodology. Remote Sens Environ 92:218–232CrossRefGoogle Scholar
  30. Hancilar U, Tuzun C, Yenidogan C, Erdik M (2010) ELER software: a new tool for urban earthquake loss assessment. Nat Hazards Earth Syst Sci 10:2677–2696CrossRefGoogle Scholar
  31. Haralik R (1979) Statistical and structural approaches to texture. Proc IEEE 67:786–804CrossRefGoogle Scholar
  32. Herold M, Goldstein NC, Clarke KC (2003) The spatiotemporal form of urban growth: measurement, analysis and modelling. Remote Sens Environ 86:286–302CrossRefGoogle Scholar
  33. Herold M, Roberts DA, Gernder ME, Dennison PE (2004) Spectrometry for urban are remote sensing: development and analysis of a spectral library from 350 to 2400 nm. Remote Sens Environ 91:304–319CrossRefGoogle Scholar
  34. IGN (Institut Geographique National (2002) Topographic mapping at 1:25000. No. 4601GT. Espace IGN, 107, rue La Boetie 75008 ParisGoogle Scholar
  35. ISDR (International Strategy for Disaster Reduction) (2009a) United Nations international strategy for disaster risk reduction. terminology on disaster risk reduction. Accessed 13 Jan 2012
  36. ISDR (International Strategy for Disaster Reduction) (2009b) Global assessment report on disaster risk reduction. Accessed 13 Jan 2012
  37. Jaiswal K, Wald D, Porter K (2010) A global building inventory for earthquake loss estimation and risk management. Earthq Spectra 26:731–748CrossRefGoogle Scholar
  38. Ji C, Liu Q, Sun D, Wang S, Lin P, Li X (2001) Monitoring urban expansion with remote sensing in China. Int J Remote Sens 22:1441–1455Google Scholar
  39. Kemper T, Jenerowicz M, Gueguen L, Poli D, Soille P (2011a) Monitoring changes in the Menik Farm IDP camps in Sri Lanka using multi-temporal very high-resolution satellite data. Int J Digit Earth 4:81–106CrossRefGoogle Scholar
  40. Kemper T, Jenerowicz M, Pesaresi M, Soille P (2011b) Enumeration of dwellings in Darfur camps from GeoEye-1 satellite images using mathematical morphology. IEEE J Sel Top Appl Earth Obser Remote Sens 4:8–15CrossRefGoogle Scholar
  41. LCCS (Land Cover Classification System) (2005) Classification concepts and user manual. Software version 2. Di Gregorio, A., and Jansen, L.J.M. Environment and Natural Resources Series No. 8. FAO, Rome. 2005Google Scholar
  42. Lee D, Shan J, Bethel J (2003) Class-guided building extraction from IKONOS. Photogramm Eng Remote Sens 69:143–150Google Scholar
  43. Li X, Yeh A (1998) Principal component analysis of staked multi-temporal images for the monitoring of rapid urban expansion in the Pearl River Delta. Int J Remote Sens 19:1501–1518CrossRefGoogle Scholar
  44. Lin C, Nevatia R (1998) Building detection and description from a single intensity image. Comput Vis Image Underst 72:101–121CrossRefGoogle Scholar
  45. Liu X, Clarke KC (2002) Estimation of residential population using high resolution satellite imagery. In: Proceedings, third international symposium on remote sensing of Urban Areas, June 2002, Istanbul, Turkey, pp 153–160Google Scholar
  46. Liu Z, Cui S,Yan Q (2008) Building extraction from high resolution satellite imagery based on multi-scale image segmentation and model matching. Earth Observ Remote Sens Appl. EORSA 2008. International Workshop, June 30 2008–July 2 2008, pp 1–7Google Scholar
  47. Lu Z, Im J, Quackenbush L, Halligan K (2010) Population estimation based on multi-sensor data fusion. Int J Remote Sens 31(21):5587–5604CrossRefGoogle Scholar
  48. Miura H, Midorikawa, S, Fujimoto K (2004) Automated building detection from high-resolution satellite image for updating GIS building inventory data. In: 13th world conference on earthquake engineering Vancouver, B.C., Canada, August 1-6, 2004Google Scholar
  49. Miura H, Midorikawa S, Eeri M (2006) Updating GIS building inventory data using high-resolution satellite images for Earthquake damage assessment: application to Metro Manila, Philippines. Earthquake Spectra 22:151–168CrossRefGoogle Scholar
  50. GEM (Global Earthquake Model) (2012) Global earthquake model initiative, Accessed 13 Jan 2012
  51. Moeller M, Blaschke T (2006) Urban change extraction from high resolution satellite image. ISPRS technical commission II symposium, Vienna, 12–14 July 2006Google Scholar
  52. Mueller M, Segl K, Heiden U, Kaufmann H (2006) Potential of high-resolution satellite data in the context of vulnerability of buildings. Nat Hazards 38:247–258CrossRefGoogle Scholar
  53. Niebergall S, Loew A, Mauser W (2007) Object-oriented analysis of very high-resolution quickbird data for mega city research in Delhi/India. Urban Remote Sensing Joint Event, April 2007, pp.1-8, 11-13Google Scholar
  54. Ouzounis GK, Soille P (2012) Attribute constrained connectivity and alpha-tree representation. IEEE Trans Pattern Anal Mach Intell (Submitted)Google Scholar
  55. Ouzounis G, Pesaresi M, Soille P (2012) Differential area profiles: decomposition properties and efficient computation. IEEE Trans Pattern Anal Mach Intell 34:1533–1548CrossRefGoogle Scholar
  56. Ozdemir B, Askoy S, Eckert S, Pesaresi M, Ehrlich D (2009) Performance measures for object detection evaluation. Pattern Recogn Lett 31:1128–1137CrossRefGoogle Scholar
  57. Pagot E, Pesaresi M (2008) Systematic study of the urban post-conflict change classification performance using spectral and structural features in a support vector machine. IEEE J Sel Top Appl Earth Obser Remote Sens 1:120–128CrossRefGoogle Scholar
  58. Pesaresi M, Ouzounis GK, Gueguen L (2012) A new compact representation of morphological profiles: report on first massive VHR image processing at the JRC. Proc SPIE 8390:839025CrossRefGoogle Scholar
  59. Pesaresi M, Ehrlich D (2009) A method to quantify built up structures from optical VHR imagery. Chapter 3. In: Gamba P, Herold M (eds) Global mapping of human settlements. Taylor and Francis, London, pp 27–58Google Scholar
  60. Pesaresi M, Gerhardinger A, Kaytakire F (2008) A robust built-up area presence index by anisotropic rotation–invariant textural measure. IEEE J Sel Top Appl Earth Obser Remote Sens 3:180–192CrossRefGoogle Scholar
  61. Pesaresi M, Ehrlich D, Caravaggi I, Kauffmann M, Louvrier C (2011) Toward global automatic built-up area recognition using optical VHR imagery. IEEE J Sel Top Appl Earth Obser Remote Sens 4:923–934CrossRefGoogle Scholar
  62. Poli D, Caravaggi I (2012) 3d modelling of large urban areas with stereo VHR satellite imagery for risk and damage assessment: lessons learned (Submitted to Natural Hazards)Google Scholar
  63. Poli D, Angiuli E, Remondino F (2010) Radiometric and geometric analysis of WorldView-2 stereo scenes. In: international archives of photogrammetry and remote sensing and spatial information sciences, Vol. XXXVIII, Part 1, 15–18 June 2010, Calgary, CanadaGoogle Scholar
  64. Polli D, Dell’Acqua F, Gamba P (2009) First steps towards a framework for earth observation (EO)-based seismic vulnerability evaluation. Environ Semeiot 2:16–30CrossRefGoogle Scholar
  65. Polli D, Dell’Acqua F, Gamba P (2010) Exploiting satellite data for large-scale assessment of seismic vulnerability in human settlement areas (GEO DI-09-01A): ESA’s living planet symposium Bergen, 2010Google Scholar
  66. Seifert F (2009) Improving urban monitoring toward a European Urban Atlas. In: Gamba P, Herold M (eds) Global mapping of human settlement. Chapter 11. Taylor and Francis series in remote sensing applications, pp 231–248Google Scholar
  67. Seto K, Woodcock C, Song C, Huang X, Lu J, Kaufmann R (2002) Monitoring land-use change in the Pearl River Delta using Landsat TM. Int J Remote Sens 23:1985–2004CrossRefGoogle Scholar
  68. Shao Y, Taff G, Walsha S (2011) Shadow detection and building height estimation using IKONOS data. Int J Remote Sens 32:6929–6944CrossRefGoogle Scholar
  69. Silván-Cárdenas JL, Wang L, Rogerson P, Wu C, Feng T, Kamphaus BD (2010) Assessing fine-spatial-resolution remote sensing for small-area population estimation. Int J Remote Sens 31(21):5605–5634CrossRefGoogle Scholar
  70. Small C (2003) High spatial resolution spectral mixture analysis of urban reflectance. Remote Sens Environ 88:170–186CrossRefGoogle Scholar
  71. Soille P (2008) Constrained connectivity for hierarchical image partitioning and simplification. IEEE Trans Pattern Anal Mach Intell 30:1132–1145CrossRefGoogle Scholar
  72. Soille P (2010) Constrained connectivity for the processing of very-high-resolution satellite images. Int J Remote Sens 31:5879–5893CrossRefGoogle Scholar
  73. Stassopoulou A, Caelli Y (2000) Building detection using Bayesian networks. Int J Pattern Recognit Artif Intell 14:715–733Google Scholar
  74. Stow D, Lopez A, Lippitt C, Hinton S, Weeks J (2007) Object-based classification of residential land use within Accra, Ghana based on QuickBird satellite data. Int J Remote Sens 28:5167–5173CrossRefGoogle Scholar
  75. Tao C, Hu Y, Jang W (2004) Photogrammetric exploitation of IKONOS imagery for mapping applications. Int J Remote Sens 25:2833–2853CrossRefGoogle Scholar
  76. Tatem A, Noor M, Hay S (2004) Defining approaches to settlement mapping for public health management I Kenya using medium spatial resolution satellite imagery. Remote Sens Environ 93:42–52CrossRefGoogle Scholar
  77. Taubenböck H, Roth A (2007) A transferable and stable object oriented classification approach in various urban areas and various high resolution sensors. Urban Remote Sens Joint Event, 11–13 April 2007, pp 1–7Google Scholar
  78. Taubenböck H, Roth A, Dech S, Mehl H (2009a) Assessing building vulnerability using synergistically remote sensing and civil engineering. In: Krek R, Zlatanova F (eds) Urban and regional data management. Taylor and Francis Group, London, pp 287–300Google Scholar
  79. Taubenböck H, Wegmann M, Roth A, Mehl H, Dech S (2009b) Urbanization in India – Spatio-temporal analysis using remote sensing data. Comput Environ Urban Syst 33:179–188CrossRefGoogle Scholar
  80. Taubenböck H, Esch T, Felbier A, Wiesner M, Roth A, Dech S (2012) Monitoring urbanization in mega cities from space. Remote sens Environ 117:162–176CrossRefGoogle Scholar
  81. Tenerelli P, Ehrlich D (2011) Analysis of built-up spatial pattern at different sales: can scattering affect map accuracy? Int J Digital Earth 4:107–116CrossRefGoogle Scholar
  82. Toutin T (2004a) DSM generation and evaluation from QuickBird stereo imagery with 3D physical modelling. Int J Remote Sens 25:5181–5193CrossRefGoogle Scholar
  83. Toutin T (2004b) Comparison of stereo-extracted DTM from different high-resolution sensors: SPOT-5, EROS-A, IKONOS-II, and QuickBird. IEEE Trans Geosci Remote Sens 42:2121–2129CrossRefGoogle Scholar
  84. Toutin T (2006a) Comparison of DSMs generated from stereo HR images using 3D physical or empirical models. Photogramm Eng Remote Sens 72:597–604Google Scholar
  85. Toutin T (2006b) Generation of DSM from SPOT-5 in-track HRS and across-track HRG stereo data using spatiotriangulation and autocalibration. ISPRS J Photogramm Remote Sens 60:170–181CrossRefGoogle Scholar
  86. Tucker C, Grant D, Dykstra J (2004) NASA’s global orthorectified Landsat TM data set. Photogramm Eng Remote Sens 70:313–322Google Scholar
  87. Urban Atlas (2010) Global monitoring for environment and security: mapping guide for a European Urban Atlas. Document Version 1.1 dated 26/08/2010. (last visited 16/01/2012)
  88. Vamvatsikos D, Kouris L, Panagopoulos G, Kappos A, Nigro E, Rossetto T, Lloyd T (2010) Structural vulnerability assessment under natural hazards: a review. Proceedings of COST action C26 final international conference on Urban habitat construction under catastrophic events, Naples 17–18 Sep 2010, pp 711–723Google Scholar
  89. Vogelman J, Sohl T, Howard S (1988) Regional characterization of land cover using multiple sources of data. Photogramm Eng Remote Sens 64:45–57Google Scholar
  90. Vogelmann J, Howard S, Yang L, Larson C, Wylie B, Van Driel J (2001) Completion of the 1990’s national land cover data set for the conterminous United States. Photogramm Eng Remote Sens 67:650–662Google Scholar
  91. Weng Q (2008) Remote sensing of impervious surfaces. Taylor and Francis series in Remote Sensing Applications CRC Press, Taylor and Francis Group, New York 455Google Scholar
  92. Wieland M, Pittore M, Parolai S, Zschau J, Moldobekov B, Begaliev U (2012) Estimating building inventory for rapid seismic vulnerability assessment: towards an integrated approach based on multi-source imaging. Soil Dynam Earthq Eng 36:78–83CrossRefGoogle Scholar
  93. Wu SS, Wang L, Qiu X (2008) Incorporating GIS building data and census housing statistics for sub-block-level population estimation. The Prof Geogr 6(1):121–135CrossRefGoogle Scholar
  94. Xu H (2007) Extraction of urban built-up land features from Landsat TM imagery using a thematic-oriented index combination technique. Photogramm Eng Remote Sens 73:1381–1391Google Scholar
  95. Zha Y, Gao J, Ni S (2003) Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int J Remote Sens 24:583–594CrossRefGoogle Scholar

Copyright information

© Eurotom: European Commission Joint Research Centre 2012

Authors and Affiliations

  1. 1.Joint Research Centre, Institute for the Protection and Security of the CitizenEuropean CommissionIspraItaly

Personalised recommendations