Skip to main content

Advertisement

Log in

Soft computing and GIS for landslide susceptibility assessment in Tawaghat area, Kumaon Himalaya, India

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

This paper mainly presents a case study of landslide vulnerability zonation along Tawaghat-Mangti route corridor in Kumaon Himalaya, India. An attempt is made to predict landslide susceptibility using back-propagation neural network (BPNN) and propose a suitable model for that zone, which can be successfully implemented for the prevention of slides. Various landslide affecting parameters such as lithology, slope, aspect, structure, geotechnical properties, land use, landslide inventory, and distance from recorded epicenter are used to model the landslide susceptibility. The database on the above parameters derived from satellite imageries, topographic maps, and field work are integrated in the GIS to generate an information layer. Database of this information layer is used to train, test, and validate the BPNN model. A three-layered BPNN with an input layer, two hidden layers, and one output layer is found to be optimal. The developed model demonstrates a promising result, and the prediction accuracy has been found to be 80 % in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aleotti P, Chowdhury R (1999) Landslide hazard assessment: summary review and new perspectives. Bull Eng Geol Environ 58:21–44

    Article  Google Scholar 

  • Battiti R (1992) First and second order methods for learning: between steepest descent and Newton’s method. Neural Comput 4(2):141–166

    Article  Google Scholar 

  • Carrara A, Cardinali M, Detti R, Guzzetti F, Pasqui V, Reichenbach P (1991) GIS techniques and statistical models in evaluating landslide hazard. Earth Surf Proc Land 16:427–445

    Article  Google Scholar 

  • Carrara A, Cardinali M, Guzzetti F, Reichenbach P (1995) GIS technology in mapping landslide hazard. In: Carrara A, Guzzetti F (eds) Geographical information systems in assessing natural hazards. Kluwer, The Netherlands, pp 135–175

    Google Scholar 

  • Chung CT, Chao RJ (2006) Application of back-propagation networks in debris flow prediction. Eng Geol 85:270–280

    Article  Google Scholar 

  • Chung CHF, Fabbri AG, Van Western CJ (1995) Multivariate regression analysis for landslide hazard zonation. In: Carrara A, Guzzetti F (eds) Geographical information system in assessing natural hazards. Kluwer, The Netherlands, pp 107–142

    Google Scholar 

  • Clerici A, Perego S, Tellini C, Vescovi P (2002) A procedure for landslide susceptibility zonation by the conditional analysis method. Geomorphology 48:349–364

    Article  Google Scholar 

  • Ermini L, Catani F, Casagli N (2005) Artificial neural networks applied to landslide susceptibility assessment. Geomorphology 66:327–343

    Article  Google Scholar 

  • Ferna`ndez-Steeger TM, Rohn J, Czurda K (2002) Identification of landslide areas with neural nets for hazard analysis. In: Stemnerk J, Wagner P (eds) Landslides. Balkema, The Netherlands, pp 163–168

    Google Scholar 

  • Genevois R, Tecca PR (1987) Probabilistic analysis of slopes stability: an application for hazard studies in the middle valley of the Tammaro River (southern Italy). Mem Soc Geol Ital 37:157–170 (in Italian)

    Google Scholar 

  • Gill PE, Murray W, Wright MH (1981) Practical optimization. Academic Press, New York, pp 1–420

    Google Scholar 

  • Gomez H, Kavzoglu T (2005) Assessment of shallow landslide susceptibility using artificial neural networks in Jabonosa River Basin, Venezuela. Eng Geol 78(1–2):11–27

    Article  Google Scholar 

  • Gupta RP, Kunango DP, Arora MK, Sarkar S (2008) Approaches for comparative evaluation of raster GIS-based landslide susceptibility zonation maps. Int J Appl Earth Obs Geoinf 10:330–341

    Article  Google Scholar 

  • Hammond C, Hall D, Miller S, Swetik P (1992) Level I stability analysis (LISA) documentation for version 2.0, General Technical Report INT-285, USDA Forest Service Intermountain Research Station

  • Haykin S (1999) Neural networks: a comprehensive foundation, 2nd edn. Prentice Hall, New Jersey, p 842

    Google Scholar 

  • Jade S, Sarkar S (1993) Statistical models for slope instability classification. Eng Geol 36:91–98

    Article  Google Scholar 

  • Jenks GF (1967) The data model concept in statistical mapping. Int Year Book Cartogr 7:186–190

    Google Scholar 

  • Kanungo DP, Arora MK, Sarkar S, Gupta RP (2006) A comparative study of conventional, ANN black box, fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility zonation in Darjeeling Himalayas. Eng Geol 85:3247–3366

    Article  Google Scholar 

  • Lee S, Choi J, Min K (2002) Landslide susceptibility analysis and verification using the bayesian probability model. Environ Geol 43:120–131

    Article  Google Scholar 

  • Lee S, Ryu JH, Won JS, Park HJ (2004) Determination and application of the weights for landslide susceptibility mapping using an artificial neural network. Eng Geol 71:289–302

    Article  Google Scholar 

  • Mayoraz F, Cornu T, Vuillet L (1996) Using neural networks to predict slope movements. In: Proceedings of VII international symposium on landslides. Trondheim, Balkema, Rotterdam, p 295–300

  • Palmstrom A (1982) The volumetric joint count—a useful and simple measure of the degree of rock mass jointing. In: IAEG Congress, New Delhi, p 221–228

  • Powell MJD (1977) Restart procedures for the conjugate gradient method. Math Program 12:241–254

    Article  Google Scholar 

  • Ramakrishanan D, Singh TN, Purwar N, Badre KS, Gulati A, Gupta S (2008) Artificial neural network and liquefaction susceptibility assessment: a case study using the 2001 Bhuj Earthquake data, Gujarat, India. Comput Geosci 12:491–501

    Article  Google Scholar 

  • Ramakrishnan D, Ghosh MK, Vinuchandran R, Jeyaram A (2005) Probabilistic techniques, GIS and remote sensing in landslide hazard mitigation: a case study from Sikkim Himalayas, India. Geocarto Int 20(4):1–6

    Article  Google Scholar 

  • Ripley B (1996) Pattern recognition and neural networks. Cambridge University Press, Cambridge, p 416

    Google Scholar 

  • Rumelhart DE, Hinton GE, Williams RJ (1986) Learning internal representation by error propagation in parallel distributed processing. Massachusetts Institute of Technology Press, Cambridge

    Google Scholar 

  • Saha AK, Gupta RP, Sarkar I, Arora MK, Csaplovics E (2005) An approach for GIS-based statistical landslide susceptibility zonation—with a case study in the Himalayas. Landslides 2:61–69

    Article  Google Scholar 

  • Sarkar K, Gulati A, Singh TN (2008) Landslide susceptibility analysis using artificial neural networks and GIS in Luhri area, Himachal Pradesh. J Indian Landslides 1(1):11–20

    Google Scholar 

  • Settle JJ, Briggs SS (1987) Fast maximum likelihood classification of remotely sensed imagery. Int J Remote Sens 8(5):723–734

    Article  Google Scholar 

  • Singh TN, Kanchan R, Saigal K, Verma AK (2004) Prediction of P-wave velocity and anisotropic properties of rock using artificial neural networks technique. J Sci Ind Res 63(1):32–38

    Google Scholar 

  • Singh TN, Gulati A, Dontha L, Bhardwaj V (2008) Evaluating cut slope failure by numerical analysis—a case study. Nat Hazards 47:263–279

    Article  Google Scholar 

  • Sinha S, Singh TN, Singh V, Verma AK (2009) Epoch determination for neural network by self organised map. Comput Geosci 14(1):199–206

    Article  Google Scholar 

  • Suzen ML, Doyuran V (2004) A comparison of the GIS based landslide susceptibility assessment methods: multivariate versus bivariate. Environ Geol 45:665–679

    Article  Google Scholar 

  • Tiwari KC, Ganapathi S, Mehta A, Sharma S, Ramakrishnan D (2006) Landslide hazard zonation of Tawaghat—Jipti Route Corridor,Pithoragarh, Uttaranchal State: Using GIS and probabilistic technique approach. Proceedings of SPIE (Kogan F. Ed.) 6412:1–12

  • Widrow B, Jovitz MC, Jacobi GT, Goldstein G (1962) Generalization and information storage in networks of adaline’neurons’. In: Self organizing systems. Spartan Books, Washington DC, pp 435–461

  • Zhou W (1999) Verification of the nonparametric characteristics of back propagation neural networks for image classification. IEEE Trans Geosci Remote Sens 37:771–779

    Article  Google Scholar 

  • Zurada KJ (2006) Introduction to artificial neural systems. 10th edn. Jaico Publishing House, Mumbai, p 120

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. N. Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramakrishnan, D., Singh, T.N., Verma, A.K. et al. Soft computing and GIS for landslide susceptibility assessment in Tawaghat area, Kumaon Himalaya, India. Nat Hazards 65, 315–330 (2013). https://doi.org/10.1007/s11069-012-0365-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-012-0365-4

Keywords

Navigation