Advertisement

Natural Hazards

, Volume 64, Issue 2, pp 1779–1803 | Cite as

Landslide risk analysis and its application in regional planning: an example from the highlands of the Outer Western Carpathians, Czech Republic

  • Jan Klimeš
  • Jan Blahůt
Original Paper

Abstract

Using detailed field mapping, an analysis of landslide risk has been undertaken in the flysch highlands of the Outer Western Carpathians. The standardized Czech methodology of expert derived susceptibility zonation widely used for land development planning purposes and deterministic modeling of shallow landslides was used to separately assess the susceptibility of different landslide types. The two susceptibility zonation maps were used to define landslide hazard using information about landslide reactivation and the return periods of precipitation that triggered the respective landslide types. A risk matrix was then used to qualitatively analyze the landslide risk to selected assets. The monetary value of these assets, according to actual market prices, was calculated and analyzed with respect to the risk classification. Since the study area is an important residential and recreational area, the practical application of the derived results was checked through a series of interviews conducted with personnel of the local government planning and construction office. This demonstrated a willingness to apply the landslide hazard maps as well as restraints of its successful application. The main one is the absence of legally binding regulations to enforce the spatial planers to use this information.

Keywords

Landslides Risk analysis Susceptibility analysis Flysch rocks Regional planning 

Notes

Acknowledgments

The authors would like to acknowledge the financial support provided by Czech Grant Agency, grant no. 205/09/P383.

References

  1. Australian Geomechanics Society (2000) Landslide risk management concepts and guidelines. Australian Geomechanics 35:49–92Google Scholar
  2. Baroň I (2004) Structure, dynamics and history of deep-seated slope failures. PhD Thesis, Masaryk UniversityGoogle Scholar
  3. Bell R, Glade T (2004) Quantitative risk analysis for landslides—examples from Bíldudalur, NW Iceland. Nat Hazard Earth Sys 4:117–131CrossRefGoogle Scholar
  4. Bíl M, Müller I (2008) The origin of shallow landslides in Moravia (Czech Republic) in the spring 2006. Geomorphology 99:246–253CrossRefGoogle Scholar
  5. Blahůt J, Klimeš J (2011) Příspěvek k české terminologii ve studiu rizik ze svahových deformací (Czech terminology of the landslide risk assessment). Geografie - sborník ČGS 116:78–90 (in Czech)Google Scholar
  6. Cáb R (2008) Landslide risk assessment in the Soláňský hřbet ridge. Diploma Thesis, Charles UniversityGoogle Scholar
  7. Cardinali M, Reichenbach P, Guzzetti F, Ardizzone F, Antonini G, Galli M, Cacciano M, Castellani M, Salvati P (2002) A geomorphological approach to the estimation of landslide hazards and risks in Umbria, Central Italy. Nat Hazard Earth Syst 2:57–72CrossRefGoogle Scholar
  8. Carrara A, Cardinali M, Guzzetti F, Reichenbach P (1995) GIS technology in mapping landside hazard. In: Carrara A, Guzzetti F (eds) Geographical information systems in assessing natural hazards. Kluwer, Dordrecht, pp 135–176Google Scholar
  9. Cruden DM, Varnes DJ (1996) Landslide types and processes. In: Turner AK, Shuster RL (eds) Landslides: investigation and mitigation. National Academies Press, Washington DC, pp 36–75Google Scholar
  10. Czech Statistical Office (2011) http://www.czso.cz. Accessed 4 Jan 2011
  11. Havlín A (2010) Hodnocení náchylnosti k sesouvání ve střední části Chřibů (Landslide susceptibility assessment in the middle part of the Chřiby). Geotechnika 3–4:3–9 (in Czech)Google Scholar
  12. Heinimann HR (1999) Risikoanalyse bei gravitativen Naturgefahren—Methode, Umwelt-Materialien, 107/I, Bern, p 115Google Scholar
  13. Hladký J (ed) (1998) Evaluation of the 1997 floods—comprehensive report of the project of the Czech ministry of environment (in Czech). http://www.chmi.cz/hydro/souhrn/obsah.html. Accessed 3 Jan 2011
  14. IUGS Working Group on Landslides—Committee on Risk Assessment (1997) Quantitative assessment for slopes and landslides—the state of the art. In: Cruden DM, Fell R (eds) Landslide risk assessment. Proceedings of the workshop on landslide risk assessment. Honolulu, Hawaii, pp 19–21 February 1997, A. A. Balkema, Rotterdam, pp 3–12Google Scholar
  15. Klimeš J (2002) Mapování svahových deformací v okrese Vsetín na listě mapy 25-23-24. Zprávy o geologických výzkumech v roce 2001. ČGS, Prague, pp 162–163Google Scholar
  16. Klimeš J (2007) Analýza podmínek vzniku svahových deformací ve Vsetínských vrších. PhD Thesis, Charles UniversityGoogle Scholar
  17. Klimeš J (2008a) Deterministický model náchylnosti území ke vzniku svahových deformací ve Vsetínských vrších. Geografie—sborník ČGS 113:48–60Google Scholar
  18. Klimeš J (2008b) Analysis of preparatory factors of landslides, Vsetínské vrchy Highland. Acta Res Rep 17:47–53Google Scholar
  19. Kováčik M (1992) Slope deformations in the flysch strata of the West Carpathians. In: Bell DH (ed) Landslides: Glissements de Terrain. Balkema, Rotterdam, pp 139–144Google Scholar
  20. Krejčí O, Baroň I, Bíl M, Jurová Z, Hubatka F, Kirchner K (2002) Slope movements in the Flysch Carpathians of Eastern Czech Republic triggered by extreme rainfalls in 1997: a case study. Phys Chem Earth 27:1567–1576CrossRefGoogle Scholar
  21. Law (191/2008) Law of regional planning and building (Building law)Google Scholar
  22. Michael-Leiba M, Baynes F, Scott G, Granger K (2003) Regional landslide risk to the Cairns community. Nat Hazards 30:233–249CrossRefGoogle Scholar
  23. Obdržálková J (1992) Landslides in the Hostýnské vrchy Mountains (Moravia). Acta Univer Palackianae Olomucensis Fac Rer Natur Geogr-Geol 109:77–84Google Scholar
  24. Pack RT, Tarboton DG, Goodwin CN (1998) Terrain stability mapping with SINMAP: technical description and users guide for version 1.00. Terratech Consulting Ltd, Salmon ArmGoogle Scholar
  25. Pánek T, Brázdil R, Klimeš J, Smolková V, Hradecký J, Zahradníček P (available online, 2011) Rainfall-induced landslide event of May 2010 in the eastern part of the Czech Republic. LandslidesGoogle Scholar
  26. Polešáková M, Halasová H, Šimková H, Vlk J (2010) Průměrné ceny dopravní a technické infrastruktury, aktualizace 2010. Ministerstvo pro místní rozvoj, BrnoGoogle Scholar
  27. Remondo J, Bonachea J, Cendrero A (2005) A statistical approach to landslide risk modelling at basin scale: from landslide susceptibility to quantitative risk assessment. Landslides 2:321–328CrossRefGoogle Scholar
  28. Remondo J, Bonachea J, Cendrero A (2008) Quantitative landslide risk assessment and mapping on the basis of recent occurrences. Geomorphology 94:496–507CrossRefGoogle Scholar
  29. Rozsypal A (2009) Problematika řízení rizik v inženýrské geologii, význam základní geotechnické zprávy pro řízení rizik podzemních staveb (Risk management in engineering geology, importance of geotechnical report for risk management). In: Pašek J, Marschalko M, Pospíšil P (eds) Proceedings of the 1st national conference – Risk in engineering geology, Ostrava, pp 29–37 (in Czech)Google Scholar
  30. Rybář J (1999) Rozbor příčin zvýšeného výskytu svahových deformací v České republice v červenci 1997. Geotechnika 2:7–14Google Scholar
  31. Rybář J (2001) Mapy náchylnosti území k sesouvání v České republice. In: Geológia a životné prostredie. Vydavatelstvo Dionýza Štůra, Bratislava, pp 22–24Google Scholar
  32. Rybář J, Nemčok A (1968) Landslide investigations in Czechoslovakia. In: Proceedings of the 1st Session of the IAEG, Prague, pp 183–198Google Scholar
  33. Rybář J, Stemberk J (2000) Avalanche-like occurrences of slope deformations in the Czech Republic and coping with their consequences. Landslide News 13:28–33Google Scholar
  34. Špůrek M (1967) Historická analýza působení klimatického sesuvného faktoru v Českém masívu. Thesis, Geologický ústav ČSAV PrahaGoogle Scholar
  35. van Westen CJ, van Asch TWJ, Soeters R (2006) Landslide hazard and risk zonation—why is it still so difficult? Bull Eng Geol Env 65:167–184CrossRefGoogle Scholar
  36. van Westen CJ, Castellanos E, Kuriakose SL (2008) Spatial data for landslide susceptibility, hazard, and vulnerability assessment: an overview. Eng Geol 102:112–132CrossRefGoogle Scholar
  37. Varnes DJ (1984) Landslide hazard zonation: a review of principles and practice. UNESCO, ParisGoogle Scholar
  38. Záruba Q (1922–1923) Studie o sesuvných terénech na Vsatsku a Valašsku. Čas Morav Mus Zem 20–21:170–180Google Scholar
  39. Záruba Q, Mencl V (1982) Landslides and their control: developments in geotechnical engineering. Academia, PragueGoogle Scholar
  40. Zêzere JL, Garcia RAC, Oliveira SC, Reis E (2008) Probabilistic landslide risk analysis considering direct costs in the area north of Lisbon (Portugal). Geomorphology 94:467–495CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of Engineering Geology, Institute of Rock Structure and MechanicsAcademy of Sciences of the Czech RepublicPrague 8Czech Republic

Personalised recommendations