Natural Hazards

, Volume 62, Issue 3, pp 1109–1123 | Cite as

ROckfall risk MAnagement assessment: the RO.MA. approach

  • Claudia Mignelli
  • Stefano Lo Russo
  • Daniele Peila
Original Paper


The analysis of risk for vehicles and drivers as a result of rockfall on a road is relevant to design management in geotechnical engineering. This process is very complex due to the large number of parameters involved. In this paper, we discuss risk analysis and management procedures for roads subject to rockfall phenomena. To this aims, we are proposing a quantitative method (the RO.MA. approach). We developed an abacus to define the threshold values of acceptable rockfall risk for a given road. Rockfall risk is calculated using an Event Tree approach and compared with the abacus thresholds to evaluate road safety and the need for additional protective measures to reduce the risk to an acceptable level. The approach was successfully applied at a test site located in Bard, Aosta Valley, north-western Italy.


Rockfall Landslide Risk assessment Event tree Road management RO.MA. approach 



The authors thank Finbard S.r.l. for permission to publish the case history data and for financial support of the present research.


  1. AGS (2000) Landslide risk management concepts and guidelines. Aust Geomech Soc Aust Geomech 35(1):49–92Google Scholar
  2. AGS (2002) Landslide risk management concepts and guidelines. Aust Geomech Soc Aust Geomech 37(2):1–44Google Scholar
  3. AGS (2007a) Guideline for landslide susceptibility, hazard and risk zoning for land use management, Australian geomechanics society landslide taskforce landslide zoning working group. Aust Geomech 42(1):13–36Google Scholar
  4. AGS (2007b) Commentary on guideline for landslide susceptibility, hazard and risk zoning for land use management, Australian geomechanics society landslide taskforce landslide zoning working group. Aust Geomech 42(1):37–62Google Scholar
  5. American Association of state highway and transportation official (AASHTO (2001) A policy on geometric design of highways and streets, 4th edn. Green book. Available at
  6. Ancold (2003) Guidelines on risk assessment. Australian National Committee on Large Dams Inc., MelbourneGoogle Scholar
  7. Aven T (2008) Risk analysis assessing uncertainties beyond expected values and probability. Wiley, Chichester, pp 32–33Google Scholar
  8. Benjamin JR, Cornell CA (1970) Probability, statistics, decision for civil engineers, McGraw-Hill, New YorkGoogle Scholar
  9. Budetta P (2004) Assessment of rockfall risk along roads. Nat Hazard Earth Syst Sci 4:71–81. doi: 10.5194/nhess-4-71 CrossRefGoogle Scholar
  10. Budetta P (2010) Rockfall-induced impact force causing a debris flow on a volcanoclastic soil slope: a case study in southern Italy. Nat Hazards Earth Syst Sci 10:1995–2006. doi: 10.5194/nhess-10-1995-2010
  11. Budetta P, Poggi F (2010) Rockfall assessment according to the Swiss federal guidelines: a case study in San Severino di Centola (Cilento). J Tech Environ Geol 3/10:5–24Google Scholar
  12. Bunce CM, Crude DM, Morgenstern NR (1997) Assessment of the hazard from rockfall on a highway. Can Geotech J 34:344–356Google Scholar
  13. Campus S, Barber S, Bovo s, Forlati F (2007) Evaluation and prevention of natural risk. Taylor & Francis Group, LondonGoogle Scholar
  14. Cancelli A, Crosta G (1993) Hazard and risk assessment in rockfall prone areas, risk and reliability in ground engineering. In: Skip BO (ed) Thomas Telford, London, pp 177–190Google Scholar
  15. Cancelli A, Crosta G (1999) Previsione e prevenzione per frane da crollo: descrizione del fenomeno e analisi del rischio. Convegno su previsione e prevenzione di movimenti franosi rapidi, Trento, pp 5–18 (in Italian)Google Scholar
  16. Crosta GB, Agliardi F (2003) A methodology for physically based rockfall hazard assessment. Nat Hazards Earth Syst Sci 3:407–422. doi: 10.5194/nhess-3-407-2003 CrossRefGoogle Scholar
  17. Crosta G, Frattini P (2000) Metodi per la valutazione del rischio da fenomeni di instabilità di versante. Dissertation, Dip. Scienze Geologiche e Geotecnologie—Università degli Studi di Milano Bicocca—Ufficio Rischi Geologici Regione Lombardia, Milano (in Italian)Google Scholar
  18. Crosta G, Frattini P, Sterlacchini S (2001) Valutazione e gestione del rischio da frana. Principi e metodi. Regione Lombardia, Milano (in Italian)Google Scholar
  19. Duncan CW, Norman IN (1996) Stabilization of rock slopes. Landslides investigations and mitigation. Special Report 247, Transportation Research Board, National Research Council, Washington, pp 474–506Google Scholar
  20. Dussauge C, Grasso JR, Helmstetter A (2003) Statistical analysis of rockfall volume distributions: implications for rockfall dynamics, J. Geophys Res 108(B6):2286. doi: 10.1029/2001JB000650 Google Scholar
  21. ERM (1998) Landslides and Boulder falls from natural terrain: risk guidelines. Report to Geotechnical Engineering Office of Hong Kong. ERM-Hong Kong LtdGoogle Scholar
  22. Eskesen G (2006) Word tunnel congress-27ITA-AITES April 22 Rockfall barriers, SeoulGoogle Scholar
  23. EU (2001) Commission of the European communities white paper. Brussels, 25 July 2001 com(2001) 428 final. Available at
  24. European Commission, Directorate—General for Employment (1996) Guidance on risk assessment at work. Electronic document. Available at
  25. Evans SG, Hungr O (1993) The assessment of rockfall hazard at the base of tulus slopes. Can Geotech J 30(4):620–636. doi: 10.1139/t93-054 CrossRefGoogle Scholar
  26. Faina L, Patrucco M, Savoca D (1996) Guidelines for risk assessments in Italian mines: European Commission S.H.C.M.O.E.I. doc. Numb. 5619/96, Bruxelles, pp 46–71Google Scholar
  27. Fell R, Hartford D (1997) Landslide risk management. Landslide risk assessment. In: Cruden D, Fell R (ed) Balkema, RotterdamGoogle Scholar
  28. Fell R, Corominas J, Bonnard C, Cascini L, Leroi E, Savage WZ, on behalf of the JTC-1 Joint Technical Committee on Landslides and Engineered Slopes (2008a) Guidelines for landslide susceptibility, hazard and risk zoning for land use planning, (Commentary). Eng Geol 102:85–98. doi: 10.1016/j.enggeo.2008.03.014
  29. Fell R, Corominas J, Bonnard C, Cascini L, Leroi E, Savage WZ on behalf of the JTC-1 Joint Technical Committee on Landslides and Engineered Slopes (2008b) Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Eng Geol 102:85–98. doi: 10.1016/j.enggeo.2008.03.022
  30. Galli M, Guzzetti F (1997) Landslide vulnerability criteria: a case study from Umbria, Central Italy. Environ Manage 40:649–664. doi: 10.1007/s00267-006-0325-4,2006 CrossRefGoogle Scholar
  31. Giani GP (1992) Rock slope stability analysis. Balkema, RotterdamGoogle Scholar
  32. Giani GP (1997) Caduta massi, analisi del moto ed opera di protezione. Hevelius, Benevento (in Italian)Google Scholar
  33. Guzzetti F (2000) Landslide fatalities and the evaluation of landslide risk in Italy. Eng Geol 58:89–107. doi: 10.1016/S0013-7952(00)00047-8 CrossRefGoogle Scholar
  34. Guzzetti F, Reichenbach P, Wieczorek GF (2003) Rockfall hazard and risk assessment in the Yosemite Valley, California, USA. Nat Hazards Earth Syst Sci 3:491–503. doi: 10.5194/nhess-3-491 CrossRefGoogle Scholar
  35. Guzzetti F, Reichenbach P, Ghigi S (2004) Rockfall hazard and risk assessment along a transportation corridor in the Nera Valley, Central Italy. Environ Manage 34(2):191–208. doi: 10.1007/s00267-003-0021-6 CrossRefGoogle Scholar
  36. HSE Health and Safety Executive (2001) Reducing risks, protecting people. Health and Safety Executive, United Kingdom, Her Majesty’s Stationery Office, LondonGoogle Scholar
  37. Hoek E (2000) Practical rock engineering, pp 115–136. Available at
  38. Hudson JA (1992) Rock engineering systems: theory and practice. Ellis HorwoodGoogle Scholar
  39. Hungr O, Evans SG, Hazzard J (1999) Magnitude and frequency of rock falls and rock slides along the main transportation corridors of south-western British Columbia. Can Geotech J 36:224–238CrossRefGoogle Scholar
  40. Iceland Ministry for the Environment (2000) Regulation on hazard zoning due to snow- and landslides, classification and utilization of hazard zones, and preparation of provisional hazard zoning. Available at
  41. Khan FI, Abbasi SA (1998) Techniques and methodologies for risk analysis in chemical process industries. J Loss Prev Process Ind 11(4):261–277. doi: 10.1016/S0950-4230(97)00051-X CrossRefGoogle Scholar
  42. Lateltin O, Haemmig C, Raetzo H, Bonnard C (2005) Landslide risk management in Switzerland. Landslides 2:313–320. doi: 10.1007/s10346-005-0018-8 CrossRefGoogle Scholar
  43. Lees F (2005) Loss prevention in the process industries, 3rd edn. Mannan, Sam, ElsevierGoogle Scholar
  44. Leroi E, Bonnard C, Fell R, McInnes R (2005) Risk assessment and management. Landslide risk management. In: Hungr O, Fell R, Couture R, Eberhardt E (eds) Taylor and Francis, London, pp 159–198Google Scholar
  45. Mölk M, Poisel R (2008) Rock fall risk rating for settlements: development of a rating system based on a case study. In:Volkwein A, Labiouse V, Schellenberg K, Morschach (eds), Proceedings of interdisciplinary workshop on rockfall protection, Switzerland, pp 78–80Google Scholar
  46. Morgan GC, Rawlings GE, Sobkowicz JC (1992) Evaluating total risk to communities from large debris flows. Geoth. and nat. haz. Bi Tech, Vancouver, pp 225–236Google Scholar
  47. Nielsen NM, Hartford DND, MacDonald JJ (1994) Selection of tolerable risk criteria for dam safety decision making. In: Proceedings of 1994 Canadian dam safety conference, Winnipeg, Manitoba. BiTech Publishers, Vancouver, pp 355–369Google Scholar
  48. Peckover FL, Kerr WG (1977) Treatment and maintenance of rock slopes on transportation routes. Can Geotech J 14(4):487–507. doi: 10.1139/T08-126 CrossRefGoogle Scholar
  49. Peila D, Guardini C (2008) Use of the event tree to assess the risk reduction obtained from rockfall protection devices. Nat Hazards Earth Syst Sci 8:1441–1450. doi: 10.5194/nhess-8-1441-2008
  50. Peila D, Pelizza S, Sassudelli F (1998) Evaluation of behavior of rockfall restraining nets by full scale tests. Rock Mech Rock Eng 31(1):1–24. doi: 10.07/s006030050006 (Springer)
  51. Peila D, Oggeri C, Barantonio P (2006) Barriere paramassi a rete, interventi e dimensionamento. Quaderni e studi di documentazione. GEAM, Torino (in Italian)Google Scholar
  52. Peila D, Oggeri C, Castiglia C (2007) Ground reinforced embankments for rockfall protection: design and evaluation of full scale tests. Landslides 4:255–265. doi: 10.1007/s10346-007-0081-4 (Springer)Google Scholar
  53. Pelizza S, Peila D, Oggeri C (2004) Tipologie di intervento per la bonifica di versanti rocciosi. In: GEAM (ed), Conference: “Bonifica di versanti rocciosi per la protezione del territorio”, Torino, pp 9–44 (in Italian)Google Scholar
  54. Pine RJ, Roberds WJ (2005) A risk-based approach for the design of rock slopes subject to multiple failure modes—illustrated by a case study in Hong Kong. Int J Rock Mech Min Sci 42:61–275. doi: 10.1016/j.ijrmms.2004.09.014 Google Scholar
  55. Redmill F, Anderson T (2006) Developments in risk-based approaches to safety proceedings of the fourteenth safety-critical systems. In: Symposium, Springer, Bristol. Available at
  56. Reeves A, Ho KKS, Lo DOK (1999) Interim risk criteria for landslides and boulder falls from natural terrain. In: Proceedings of seminar on geotechnical risk managementGoogle Scholar
  57. RTA (2001) Guide to slope risk analysis version 3.1 roads and traffic authority, New South Wales, Australia. Available at
  58. Stewart IE, Baynes FJ, Lee IK (2002) The RTA guide to slope risk analysis version 3.1. Aust Geomech 37(2):115–148Google Scholar
  59. Varnes DJ (1984) Landslide hazard zonation: a review of principles and practice. Natural Hazards, vol 3. UNESCO, ParisGoogle Scholar
  60. Velebil J, Šíma J, Vilímek V (2009) Geo-risk management for developing countries—vulnerability to mass wasting in the Jemma River Basin, Ethiopia. Landslides 7:99–103. doi: 10.1007/s10346-009-0191-2 CrossRefGoogle Scholar
  61. Vrijling JK, Van Hengel W, Houben RJ (1998) Acceptable risk as a basis for design. Reliability and Engineering Safety, 59. No. 1. In: Apostolakis et al. (ed)Google Scholar
  62. Wieczorek GF, Stock GM, Reichenbach P, Snyder JB, Borchers JW, Godt JW (2008) Investigation and hazard assessment of the 2003 and 2007 Staircase Falls rock falls, Yosemite National Park, California, USA. Nat Hazards Earth Syst Sci 8:421–432. doi: 10.5194/nhess-8-421-2008 CrossRefGoogle Scholar
  63. Wilkinson G, David R, (2009) Safety-critical systems: problems, process and practice. In: Dale C, Anderson T (eds) Brighton, UKGoogle Scholar
  64. Zischg A, Fuchs S, Keiler M, Stötter J (2005) Temporal variability of damage potential on roads as a conceptual contribution towards a short-term avalanche risk simulation. Nat Hazards Earth Syst Sci 5:235–242. doi: 10.5194/nhess-5-235-2005 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Claudia Mignelli
    • 1
  • Stefano Lo Russo
    • 1
  • Daniele Peila
    • 1
  1. 1.Department of Land, Environment and Geo-Engineering (DITAG)Politecnico di TorinoTurinItaly

Personalised recommendations