Advertisement

Natural Hazards

, Volume 59, Issue 1, pp 33–46 | Cite as

Anomalous land surface temperature and outgoing long-wave radiation observations prior to earthquakes in India and Romania

  • Vineeta Rawat
  • Arun K. Saraf
  • Josodhir Das
  • Kanika Sharma
  • Yazdana Shujat
Original Paper

Abstract

Cumulative stress energy in an earthquake preparation zone under operating tectonic force manifests various observable signs of the impending earthquake, i.e., earthquake precursors. This energy transformation may result in enhanced transient thermal infrared (TIR) emission, which can be detected through satellites equipped with thermal sensors like AVHRR (NOAA), MODIS (Terra/Aqua). This paper presents observations made using NOAA-AVHRR data–derived land surface temperature (LST) and outgoing long-wave radiation (OLR) values in case of two moderate earthquakes (22 July 2007, Yamnotri earthquake, India and 27 October 2004, Vrancea earthquake, Romania) using anomalous TIR signals as reflected in LST rise and high OLR values can be seen conspicuously and following similar growth pattern spatially and temporally. In both the cases, data analysis revealed a transient thermal infrared rise in LST ranging 5–10°C around epicentral areas. The thermal anomalies started developing about 7–8 days prior to the main event depending upon the magnitude and focal depth and disappeared after the main shock. Similarly, the OLR values ~30–45 W/m2 higher than the normal were observed 7–8 days prior to the main event. The rise in LST can be attributed to enhanced greenhouse gas emission from the squeezed rock pore spaces and/or to the activation of p-holes in stressed rock volume and their further recombination at rock-air interface. OLR is temperature and humidity dependent, and any change in these variables may be responsible for anomalous OLR values.

Keywords

Earthquake Land surface temperature (LST) Outgoing long-wave radiation (OLR) 

Notes

Acknowledgments

We are greatly indebted to Ministry of Earth Sciences erstwhile Department of Science and Technology (Seismology Division), New Delhi for financial assistance. The authors would also like to thank NOAA-CLASS for NOAA-AVHRR data and NOAA/ESRL Physical Sciences Division, Boulder Colorado for Interpolated OLR data.

References

  1. Becker F, Li ZL (1990) Towards a local split window method over land surfaces. Int J Remote Sens 11:369–393CrossRefGoogle Scholar
  2. Choudhury S, Dasgupta S, Saraf AK, Panda SK (2006) Remote sensing observations of pre-earthquake thermal anomalies in Iran. Int J Remote Sens 27(20):4381–4396CrossRefGoogle Scholar
  3. Filizolla C, Pergola N, Pietrapersota C, Tramutoli A (2004) Robust satellite techniques for seismically active areas monitoring: a sensitivity analysis on September 7, 1999 Athen’s earthquake. Phys Chem Earth 29:517–527Google Scholar
  4. Freund F (2002) Charge generation and propagation in igneous rocks. J Geodyn 33:543–570CrossRefGoogle Scholar
  5. Freund F (2003) Rocks that crackle and sparkle and glow: strange pre-earthquake phenomena. J Sci Explor 17(1):37–71Google Scholar
  6. Freund F, Keefner J, Mellon JJ, Post R, Takeuchi A, Lau BWS, La A, Ouzounov D (2005) Enhanced mid-infrared emission from igneous rocks under stress. Geophys Research Abstracts 7:09568Google Scholar
  7. Freund F, Takeuchi A, Lau BWS, Al-Manaseer A, Fu CC, Byrant NA, Ozounov D (2007) Stimulated infrared emission from rocks: assessing a stress indicator. eEarth 2:1–10CrossRefGoogle Scholar
  8. Freund FT, Kulahci IG, Cyr G, Ling J, Winnick M, Tregloan-Reed J, Freund MM (2009) Air ionization at rock surfaces and pre-earthquake signals. J Atmospheric Solar-Terrestrial Phys 71:1824–1834CrossRefGoogle Scholar
  9. Genzano N, Alianno C, Filizolla C, Pergola N, Tramutoli A (2007) A robust satellite technique for monitoring seismically active areas: the case of Bhuj-Gujrat earthquake. Tectonophysics 431:197–210CrossRefGoogle Scholar
  10. Gorny VI, Salman AG, Tronin AA, Shilin BB (1988) The earth’s outgoing IR radiation as an indicator of seismic activity. Proc Acad Sci USSR 301:67–69Google Scholar
  11. Gruber A, Krueger AF (1984) The status of the NOAA outgoing longwave radiation data set. Bull Am Meteorol Soc 65(9):958–962CrossRefGoogle Scholar
  12. Gruber A, Winston JS (1978) Earth-atmosphere radiative heating based on NOAA scanning radiometer measurements. Bull Am Meteorol Soc 59:1570–1573CrossRefGoogle Scholar
  13. Guangmeng G (2008) Studying thermal anomaly before earthquake with NCEP data, the international archives of the photogrammetry, remote sensing and spatial information sciences, vol XXXVII, part B8, BeijingGoogle Scholar
  14. Hayakawa M, Molchanov OA (eds) (2002) Seismo electromagnetic lithosphere atmosphere coupling. Terra Scientific Publishing Company (TERRAPUB), TokyoGoogle Scholar
  15. Kane RP (2008) Spatial and temporal characteristics of outgoing longwave radiation (OLR): an update. Brazilian J Geophys 26(2):227–236Google Scholar
  16. Liebmann B, Smith CA (1996) Description of a complete (Interpolated) outgoing longwave radiation dataset. Bull Am Meteorol Soc 77:1275–1277Google Scholar
  17. NOAA (2006) NOAA KLM user’s guide. Available online at http://www2.ngdc..noaa.gov/docs/klm/html/c7/sec7-1.htm. Accessed 28 Aug 2009
  18. Ouzounov D, Freund F (2004) Mid-infrared emission prior to strong earthquakes analyzed by remote sensing data. Adv Space Research 33:268–273CrossRefGoogle Scholar
  19. Ouzounov D, Bryant N, Logan T, Pulinets T, Taylor P (2006) Satellite thermal IR phenomena associated with some of the major earthquakes in 1999–2003. Phys Chem Earth 31:154–163Google Scholar
  20. Ouzounov D, Liu D, Chunli K, Cervone G, Kafatos M, Taylor P (2007) Outgoing long wave radiation variability from IR satellite data prior to major earthquakes. Tectonophysics 431:211–220CrossRefGoogle Scholar
  21. Panda SK, Choudhury S, Saraf AK, Das JD (2007) MODIS land surface temperature data detects thermal anomaly preceeding 8 October 2005 Kashmir earthquake. Int J Remote Sens 28(20):4587–4596CrossRefGoogle Scholar
  22. Pulinets SA (2004) Ionospheric precursors of earthquakes: recent advances in theory and practical applications. Terr Atmospheric Ocean Sci 15(3):413–435Google Scholar
  23. Pulinets SA, Boyarchuk KA, Hegai VV, Kim VP, Lomonosov AM (2000) Quasi electrostatic model of atmosphere–thermosphere–ionosphere coupling. Adv Space Research 26(8):1209–1218CrossRefGoogle Scholar
  24. Qiang Z, Xiu-Deng X, Chang-Gong D (1991) Thermal infrared anomaly–precursor of impending earthquakes. Chin Sci Bull 36(4):319–323Google Scholar
  25. Qiang Z, Kong LC, Zheng LZ, Guo MH, Wang GP, Zhao Y (1997) An experimental study on temperature increasing mechanism of satellite thermo-infrared. Acta Seismologica Sinica 10(2):247–252CrossRefGoogle Scholar
  26. Qiang Z, Chang-gong D, Lingzhi L, Min X, Fengsha G, Tao L, Yong Z, Manhong G (1999) Satellite thermal infrared brightness temperature anomaly image–short-term and impending earthquake precursors. Sci China 42(3):313–324CrossRefGoogle Scholar
  27. Radulian M, Bonjer KP, Popescu E, Popa M, Lonescu C, Grecu B (2007) The Ocober 27, 2004 Vrancea (Romania) earthquake. Orfeus Newsl 7(1):1Google Scholar
  28. Saraf AK, Choudhury S (2003) Satellite detects surface thermal anomalies associated with the Algerian earthquakes of May 2003. Int J Remote Sens 26(13):2705–2713CrossRefGoogle Scholar
  29. Saraf AK, Choudhury S (2005a) NOAA-AVHRR detects thermal anomaly associated with 26 January, 2001 Bhuj earthquake, Gujarat, India. Int J Remote Sens 26(6):1065–1073CrossRefGoogle Scholar
  30. Saraf AK, Choudhury S (2005b) Satellite detects surface thermal anomalies associated with the Algerian earthquakes of May 2003. Int J Remote Sens 26(13):2705–2713CrossRefGoogle Scholar
  31. Saraf AK, Choudhury S (2005c) SSM/I Applications in studies of thermal anomalies associated with earthquakes. Int J Geoinformatics 2(3):197–207Google Scholar
  32. Saraf AK, Rawat V, Banerjee P, Choudhury S, Panda SK, Dasgupta S, Das JD (2008) Satellite detection of earthquake thermal infrared precursors in Iran. Nat Hazards 47:119–135. doi: 10.1007/s11069-007-9201-7 CrossRefGoogle Scholar
  33. Saraf AK, Rawat V, Choudhury S, Dasgupta S, Das J (2009) Advances in understanding of the mechanism for generation of earthquake thermal precursors detected by satellites. Int J Appl Earth Obs Geoinformation 11:373–379. doi: 10.1016/j.jag.2009.07.003 CrossRefGoogle Scholar
  34. Tramutoli V, DiBello G, Pergola N, Piscitelli S (2001) Robust satellite techniques for remote sensing of seismically active areas. Annals of Geofisica 44:295–312Google Scholar
  35. Tramutoli V, Cuomo V, Filizzola C, Pergola N, Pietrapertosa C (2005) Assessing the potential of thermal infrared satellite surveys for monitoring seismically active areas: the cas of Kocaeli (Izmit) earthquake, August 17, 1999. Remote Sens Environment 96:409–426CrossRefGoogle Scholar
  36. Tronin AA (1996) Satellite thermal survey–a new tool for the study of seismoactive regions. Int J Remote Sens 17:1439–1455CrossRefGoogle Scholar
  37. Tronin AA (2000) Thermal satellite data for earthquake research. In: IGARSS 2000, IEEE 2000 international geosciences symposium. Taking the pulse of the planet: the role of remote sensing in managing the environment, Honolulu, HI, IEEEGoogle Scholar
  38. Tronin AA, Hayakawa M, Molchanov OA (2002) Thermal IR satellite data application for earthquake research in Japan and China. J Geodynamics 33:519–534CrossRefGoogle Scholar
  39. Varotsos PA, Sarlis NV, Skordas ES, Lazaridou MS (2005) Natural entropy fluctuations discriminate similar-looking electric signals emitted from systems of different dynamics. Phys Rev E71(011110):1–11Google Scholar
  40. Varotsos PA, Sarlis NV, Skordas ES, Tanaka HK, Lazaridou MS (2006a) Entropy of seismic electric signals: analysis in the natural time under time reversal. Phys Rev E73(031114):1–8Google Scholar
  41. Varotsos PA, Sarlis NV, Skordas ES, Tanaka HK, Lazaridou MS (2006b) Attempt to distinguish long-range temporal correlations from the statistics of the increments by natural time analysis. Phys Rev E74(021123):1–12Google Scholar
  42. ZiQi G, Guiwen H, Shuqing Q (2001) Spatial detect technology applied on earthquake’s impending forecast. Paper presented at 22nd Asian conference on remote sensing, Singapore, 5–9 Nov 2001Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Vineeta Rawat
    • 1
  • Arun K. Saraf
    • 1
  • Josodhir Das
    • 1
  • Kanika Sharma
    • 1
  • Yazdana Shujat
    • 1
  1. 1.Department of Earth SciencesIndian Institute of Technology RoorkeeRoorkeeIndia

Personalised recommendations