Advertisement

Natural Hazards

, Volume 54, Issue 3, pp 879–899 | Cite as

Automatic calibration tool for river models based on the MHYSER software

  • Justin McKibbon
  • Tew-Fik Mahdi
Original Paper

Abstract

Due to their complex nature, river models require extensive calibration in order to achieve reliable model predictions. Manually fitting the numerous parameters included in this procedure can be a laborious and repetitive process. This paper presents a new instrument, developed specifically for the automatic calibration of river models based on the software MHYSER. The instrument is completely autonomous and returns the model with the parameter values giving rise to the smallest difference between the model-generated observations and the measured observations. It utilises the software PEST to fit continuous calibration parameters and exceeds the program’s capabilities in order to also fit discontinuous calibration parameters. Testing of the instrument is accomplished using three models, one of which was developed during a study on the dynamics of sediments on the Romaine River, situated in the Eastern region of the Province of Quebec.

Keywords

Automatic calibration Automatic fitting River models Sediment transport Calibration parameters Model-independent parameter estimation MHYSER PEST 

References

  1. Ackers P, White WR (1973) Sediment transport: new approach and analysis. J Hydraul Div ASCE HY11: 99Google Scholar
  2. Ashida K, Michiue M (1972) Study on hydraulic resistance and bed-load transport rate in alluvial streams (In Japanese). Proc JSCE 206:59–69Google Scholar
  3. Bennett JP, Nordin CF (1977) Simulation of sediment transport and armouring. Hydrol Sci Bull XXIIGoogle Scholar
  4. Doherty J (2004) PEST model-independent parameter estimation user manual. Watermark numerical computing, 5th edn. 362 ppGoogle Scholar
  5. DuBoys MP (1879) Le Rhône et les rivières à lit affouillable. Annals de Ponts et Chaussée 18(5):141–195Google Scholar
  6. Engelund F, Hansen E (1972) A monograph on sediment transport in alluvial streams. Teknish Forlag, Technical Press, CopenhagenGoogle Scholar
  7. GENIVAR (2004) Rivière Romaine – Modélisation hydrodynamique 1D entre les PK 0 et 192. Rapport du Groupe conseil GENIVAR inc. à Hydro-Québec Production, Direction Aménagement de production, Hydraulique et Géotechnique, 95 pGoogle Scholar
  8. GENIVAR (2006) Complexe de la rivière Romaine − Dynamique hydrosédimentaire des frayères à saumon atlantique. Rapport sectoriel. Pelletier, P., Levasseur, M., Bouazza, Z., Delage, P.-L. et Hamdi, S. GENIVAR Société en commandite pour Hydro-Québec Équipement, Unité Environnement. Version préliminaireGoogle Scholar
  9. GENIVAR (2007) Complexe de la rivière Romaine − Dynamique hydrosédimentaire des frayères à saumon atlantique. Rapport sectoriel. Pelletier, P., Levasseur, M., Bouazza, Z., Delage, P.-L. et Hamdi, S. GENIVAR Société en commandite pour Hydro-Québec Équipement, Unité Environnement. 84 p, annexesGoogle Scholar
  10. Laursen EM (1958) The total sediment load of streams. J Hydraul Div ASCE 84 (HY1)Google Scholar
  11. Madden E (1993) Modified Laursen method for estimating bed-material sediment load. USACE-WES, contract report, HL-93-3Google Scholar
  12. Mahdi T (2009) Semi-two-dimensional numerical model for river morphological change prediction: theory and concepts. J Nat Hazard 49(3):577–589Google Scholar
  13. Meyer-Peter E, Müller R (1948) Formula for bed-load transport. In: Proceedings of the international association for hydraulic research, 2nd meeting, StockholmGoogle Scholar
  14. Parker G (1990) Surface based bedload transport relationship for gravel rivers. J Hydraul Res 28(4):417–436CrossRefGoogle Scholar
  15. Toffaleti FB (1968) Definitive computations of sand discharge in rivers. J Hydraul Div ASCE 95(HY1)Google Scholar
  16. Vidal J-P, Moisan S, Faure J-B, Dartus D (2007) River model calibration, from guidelines to operational support tools. Environ Model Softw 22(11):1628–1640CrossRefGoogle Scholar
  17. Yang CT (1973) Incipient motion and sediment transport. J Hydraul Div ASCE 99(HY10):1679–1704Google Scholar
  18. Yang CT (1979) Unit stream power equations for total load. J Hydrol 40Google Scholar
  19. Yang CT (1984) Unit stream power equation for gravel. J Hydraul Div ASCE 110(HY12)Google Scholar
  20. Yang CT (2003) Sediment transport—theory and practice, 2nd edn. Krieger, MalabarGoogle Scholar
  21. Yang CT, Simões FJM (2002) User’s Manual for GSTARS3 (Generalized Sediment Transport model for Alluvial River Simulation version 3.0). U.S. Department of the Interior, Bureau of Reclamation Technical Service Center, 310 ppGoogle Scholar
  22. Yang CT, Molinas A, Wu B. (1996) Sediment transport in the Yellow River. J Hydraul Eng ASCE 122(5)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Département des génies civil, géologique et des mines (CGM)École Polytechnique de MontréalMontrealCanada

Personalised recommendations