Natural Hazards

, Volume 54, Issue 3, pp 623–642 | Cite as

Landslide hazard and risk assessment and their application in risk management and landuse planning in eastern flank of Menoreh Mountains, Yogyakarta Province, Indonesia

  • Danang Sri Hadmoko
  • Franck Lavigne
  • Junun Sartohadi
  • Pramono Hadi
  • Winaryo
Original Paper


The Menoreh Mountains in Yogyakarta are severely affected by landslides. Due to the high population densities, mass movements are generally damaging and fatal. More than other Javanese mountains, the Menoreh Mountains cumulate several factors causing landslides. Therefore, it is necessary to evaluate the ways to map landslide risk in order to improve the risk mitigation. The objectives of this paper are to provide landslide hazard and risk assessment that will be useful for risk prevention and landuse planning in the Menoreh Mountains. So far, risk management has been developed by the Research Centre for Disasters Gadjah Mada University in collaboration with the Regional Development Planner (BAPPEDA), which carries out fundamental and applied researches. The results of the studies have been integrated in the risk prevention and landuse planning in order to improve the integrated landslide mitigation programme.


Landslides Hazard Risk mapping GIS Risk management Mitigation Menoreh Mountains Java 



The authors thankful to the governmental regional planner (BAPPEDA) of Kulonprogo district, Yogyakarta Special Province, who had supported this work, as well as the Laboratoire de Géographie Physique, UMR 8591 CNRS, France, and the French Embassy in Indonesia. We acknowledge Research Centre for Disasters, Gadjah Mada University (PSBA UGM), for all the service and help during the field work and data processing, as well as the Directorate Volcanology and Geological Hazard Mitigation, who provided the landslide data in Java.


  1. Abella EAC, Van Westen CJ (2008) Qualitative landslide susceptibility assessment by multicriteria analysis: a case study from San Antonio del Sur, Guantánamo, Cuba. Geomorphology 94:453–466. doi: 10.1016/j.geomorph.2006.10.038 CrossRefGoogle Scholar
  2. Carrara A, Cardinali M, Detti R, Guzzetti F, Pasqui V, Reichenbach P (1991) GIS techniques and statistical models in evaluating landslide hazard. Earth Surf Process Landf 16:427–445. doi: 10.1002/esp.3290160505 CrossRefGoogle Scholar
  3. Dai FC, Lee CF, Ngai YY (2002) Landslide risk assessment and management: an overview. Eng Geol 64:65–87. doi: 10.1016/S0013-7952(01)00093-X CrossRefGoogle Scholar
  4. Dibyosaputro S (1999) Landslide in Samigaluh Sub Distric, Kulonprogo Prefecture, Yogyakarta Special Province. Scientific report. Gadjah Mada University (in Indonesian)Google Scholar
  5. Einstein HH (1997) Landslide risk—systematic approaches to assessment and management. In: Cruden F (eds) Proceedings landslide risk assessment, Honolulu, BalkemaGoogle Scholar
  6. Ercanoglul M, Gokceoglu C, Van Asch TWJ (2004) Landslide susceptibility Zoning North of Yenice (NW Turkey) by multivariate statistical techniques. Nat Hazards 32:1–23CrossRefGoogle Scholar
  7. Goenadi S, Sartohadi J, Hardiyatmo HC, Hadmoko DS, Giyarsih SR (2003) Integrated land conservation in landslide hazardous area, Kulonprogo, Yogyakarta Special Province. Scientific report of Hibah Bersaing, Gadjah Mada University (in Indonesian)Google Scholar
  8. Gorsevski PV, Gessler PE, Boll J, Elliot WJ, Foltz RB (2006) Spatially and temporally distributed modelling of landslide susceptibility. Geomorphology 80:178–198. doi: 10.1016/j.geomorph.2006.02.011 CrossRefGoogle Scholar
  9. Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 31:181–216. doi: 10.1016/S0169-555X(99)00078-1 CrossRefGoogle Scholar
  10. Hadmoko DS (2006a) Les mouvements de terrain dans les Monts Menoreh: déclenchement, dynamique, aléa, modélisation spatio-temporelle et risques associés, M.Sc. Thesis, Université Paris 1, Panthéon Sorbonne, France, pp 83 (unpublised)Google Scholar
  11. Hadmoko DS (2006b) Wet season and related natural disasters: learning from several cases of landslides in Java. Paper presented on the seminar on disasters, research center for disasters, Gadjah Mada University. Indonesia (Dec):29 (in Indonesian)Google Scholar
  12. Hadmoko DS (2007) Toward GIS-based integrated landslide hazard assessment: a critical overview. Indonesian J Geogr 34:55–77Google Scholar
  13. Hadmoko DS, Lavigne F (2007) Landslides in Menoreh Mountains, Central Java, Indonesia: dynamics, triggering, spatio-temporal analysis, and associated hazards. Paper presented on the international conference of international association of geomorphologists on environmental change in the tropic. Kota Kinabalu, Sabah, Malaysia 22–25 JuneGoogle Scholar
  14. Hutchinson JN (1995) Keynote paper: landslide hazard assessment. In: Bell DH (ed) Landslides. Balkema, Rotterdam, pp 1805–1841Google Scholar
  15. Karnawati D, Ibriam I, Anderson MG, Holcombe EA, Mummery GT, Renaud JP, Wang Y (2004) An initial approach to identifying slope stability control in Southern Java and to providing community-based landslide warning information. In: Glade T, Anderson M, Crozier MJ (eds) Landslide hazard and risk. Wiley, London, pp 733–763Google Scholar
  16. Knapen A, Kitutu MG, Poesen J, Breugelmans W, Decker J, Muwanga A (2006) Landslides in a densely populated county at the footslopes of Mount Elgon (Uganda): characteristics and causal factors. Geomorphology 73:149–165. doi: 10.1016/j.geomorph.2005.07.004 CrossRefGoogle Scholar
  17. Lateltin O, Haemmig C, Raetzo H, Bonnard C (2005) Landslide risk management in Switzerland. Landslides 2:313–320. doi: 10.1007/s10346-005-0018-8 CrossRefGoogle Scholar
  18. Leone AJP, Leroi E (1996) Vulnerability assessment of elements exposed to mass-moving: working toward a better risk perception. In: Senneset K (ed) Landslides. Balkema, Rotterdam, pp 263–269Google Scholar
  19. Mardiatno D (2002) Landslide risk in Girimulyo Sub District Kulonprogo Prefecture, Yogyakarta Special Province. M.Sc. Thesis. Fac. of geography, Gadjah Mada University (in Indonesian)Google Scholar
  20. Panday A, Dabral PP, Chowdary VM, Yadav NK (2008) Landslide hazard zonation using remote sensing and GIS: a case study of Dikrong river basin, Arunachal Pradesh. India Environ Geol 54:1517–1529. doi: 10.1007/s00254-007-0933-1 CrossRefGoogle Scholar
  21. Pusat Studi Bencana Universitas Gadjah Mada (PSBA-UGM) (2001) Penyusunan Sistem Informasi Penanggulangan Bencana Alam Tanah Longsor di Kabupaten Kulon Progo—laporan akhir (Landslide Disaster Information System for Kulon Progo Distric). Yogyakarta, BAPPEDA Kabupaten Kulon Progo, p 67 (unpublised)Google Scholar
  22. Raharjo W, Sukandarrumidi, Rosyidi, HMD (1995) Geological map of Yogyakarta. Faculty of Engineering, Gadjah Mada UniversityGoogle Scholar
  23. Research Center for Disasters, Gadjah Mada University (2001) Landslide disaster information system in Kulonprogo Prefecture, Yogyakarta Province, Indonesia. Unpublished report, Research Center for Disasters, Gadjah Mada University, Yogyakarta, Indonesia. 120 p (in Indonesian version)Google Scholar
  24. Saha AK, Gupta RP (2002) GIS-based landslide hazard zonation in the Bhagirathi (Ganga) Valley, Himalayas. Int J Remote Sens 23(2):357–369. doi: 10.1080/01431160010014260</jrn> CrossRefGoogle Scholar
  25. Saldivar-Sali A, Einstein HH (2007) A landslide risk rating system for Baguio, Philippines. Eng Geol 91(2–4):85–99CrossRefGoogle Scholar
  26. Stanganell M (2008) A new pattern of risk management: the Hyogo framework for action and Italian practise. Socio-Econ Plan Sci 42(2):92–111CrossRefGoogle Scholar
  27. Terlien MTJ (1996) Modelling spatial and temporal variations in rainfall-triggered landslides. PhD thesis, ITC Publ. no. 32, p 254Google Scholar
  28. Van Bemmelen RW (1949) The geology of Indonesia. Government Printing Office, The HagueGoogle Scholar
  29. Van Westen CJ (1993) Application of geographic information systems to landslide hazard zonation. PhD thesis, Technical University Delft, pp 245 (unpublished)Google Scholar
  30. Van Westen CJ, Rengers N, Soeters R (2003) Use of geomorphological information in indirect landslide susceptibility assessment. Nat Hazards 30:399–419CrossRefGoogle Scholar
  31. Van Westen CJ, Van Asch TWJ, Soeters R (2005) Landslide hazard and risk zonation—why is it still so difficult? Bull Eng Geol. doi:  10.1007/s10064-005-0023-0
  32. Varnes DJ (1984) Landslide hazard zonation: a review of principles and practice, Commission on landslides of the IAEG, UNESCO, Natural Hazards No. 3, pp 61Google Scholar
  33. Wang H, Gangjun L, Weiya X, Gonghui W (2005) GIS-based landslide hazard assessment: an overview. Prog Physical Geogr 29:548–567. doi: 10.1191/0309133305pp462ra CrossRefGoogle Scholar
  34. Watchal DJ, Hudak PF (2000) Mapping landslide susceptibility in Travis County, Texas, USA. GeoJournal 51:245–253CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Danang Sri Hadmoko
    • 1
    • 2
    • 3
  • Franck Lavigne
    • 2
  • Junun Sartohadi
    • 1
    • 3
  • Pramono Hadi
    • 3
  • Winaryo
    • 3
  1. 1.Research Center for DisastersGadjah Mada UniversityYogyakartaIndonesia
  2. 2.Université Paris 1 Panthéon SorbonneParisFrance
  3. 3.Faculty of GeographyGadjah Mada UniversityYogyakartaIndonesia

Personalised recommendations