Natural Hazards

, Volume 52, Issue 2, pp 453–479 | Cite as

Estimation of industrial and commercial asset values for hazard risk assessment

  • Isabel Seifert
  • Annegret H. Thieken
  • Mirjam Merz
  • Dietmar Borst
  • Ute Werner
Original Paper


For risk analyses not only knowledge about the impact of different types of hazards, but also information about the elements and values at risk is necessary. This article introduces a methodology for a countrywide estimation of asset values for commercial and industrial properties using Germany as an example. It consists of a financial appraisal of asset values on the municipal level and a further disaggregation by means of land use data. Novelties are the distinction of 60 economic activities, the consideration of production site sizes and the application of a dasymetric mapping technique for a sector-specific estimation and disaggregation of asset values. A validation with empirical data confirms the feasibility of the calculation. The resulting maps can be used for loss estimations e.g. in the framework of cost–benefit analyses that aim to evaluate hazard mitigation measures or for portfolio analyses by banks and insurance companies. The approach can be used for other countries if the necessary data is available (mainly in industrialized countries). In any case, it reveals the critical points when estimating commercial and industrial asset values.


Asset estimation Industrial and commercial asset values Risk assessment Loss estimation Dasymetric mapping 



This work was done within the research project MEDIS (Methods for the evaluation of direct and indirect flood losses), which has been funded by the German Ministry for Education and Research (BMBF) (No. 0330688) within the research programme RIMAX (Risk management of extreme flood events). Cooperation partner was the CEDIM (Center for Disaster Management and Risk Reduction Technology), which is a joint venture between the GeoForschungsZentrum Potsdam (GFZ), the University of Karlsruhe (TH) and the Forschungszentrum Karlsruhe (FZK). Their financial and data supports are gratefully acknowleged.

Glossary of used terms and abbreviations


Official topographic and cartographic information system (Amtliches topographisch-kartographisches Informationssystem)

Branch variability

Variation of the stock of fixed assets between 60 different economic branches.


CORINE Land Cover data as at the year 2000; CORINE stands for Coordination of Information on the Environment


Federal Employment Agency of Germany


Federal Statistical Office of Germany


Geo information system

“Master”-production site

If a company has more than one production site in the same municipality all production sites were counted as one “master”-production site.

MEI assets

Sum of machinery, equipment and immaterial assets

Spatial variability

Variation of the stock of fixed assets in space i.e. between 16 federal states

WZ 2003

German classification system of economic activities, based on the European Nomenclature of economic activities (NACE—Nomenclature statistique des Activites economiques dans la Communaute Europenne; Eurostat 2002)


  1. BELF (Der Bundesminister für Ernährung Landwirtschaft und Forsten) (1990) Bewertungsgutachten für Deichbauvorhaben an der Festlandküste—Modellgebiet Wesermarsch. Research Report, BELF, BonnGoogle Scholar
  2. BKG (Bundesamt für Kartographie und Geodäsie) (2004) ATKIS® DLM1000, VG250Google Scholar
  3. Blong R (2003) A new damage index. Nat Hazards 30(1):1–23CrossRefGoogle Scholar
  4. Büchele B, Kreibich H, Kron A, Thieken AH, Ihringer J, Oberle P, Merz B, Nestmann F (2006) Flood-risk mapping: contributions towards an enhanced assessment of extreme events and associated risks. NHESS 6:485–503Google Scholar
  5. Chen K, McAneney J, Blong R, Leigh R, Hunter L, Magill C (2004) Defining area at risk and its effect in catastrophe loss estimation: a dasymetric mapping approach. Appl Geogr 24:97–117CrossRefGoogle Scholar
  6. DLR/UBA (Deutsches Zentrum für Luft- und Raumfahrt / Umweltbundesamt) (2002) CORINE Land Cover Data 2000 (CLC2000)Google Scholar
  7. Dutta D, Herath S, Musiake K (2003) A mathematical model for flood loss estimation. J Hydrol 277:24–49CrossRefGoogle Scholar
  8. Eicher CL, Brewer CA (2001) Dasymetric mapping and areal interpolation: implementation and evaluation. Cartogr Geogr Inf Sci 28(2):125–138CrossRefGoogle Scholar
  9. Eurostat (2002) Statistical classification of economic activities in the European community, NACE Rev.1.1, Accessed 1 Dec 2007
  10. FEAG (FEAG Germany) (2003) Zahl der Betriebe und ihrer Beschäftigten, FEAG, data centre, 30 June 2003Google Scholar
  11. FEMA (Federal Emergency Management Agency) (2003) HAZUS-MH MR1, Flood model, technical manual. Department of Homeland, Technical Report.Google Scholar
  12. FSOG (Federal Statistical Office Germany) (2002) Klassifikation der Wirtschaftszweige. Ausgabe 2003, FSOG, WiesbadenGoogle Scholar
  13. FSOG (Federal Statistical Office Germany) (2003) Databases: GENESIS-Online and GENESIS-Online Regional, data provided on: Stock of fixed assets (MEI-assets) for useful animals and plants, Stock of fixed assets (MEI-assets) for immaterial assets, Stock of fixed assets (buildings and MEI-assets) for 60 economic activities in Germany, Stock of fixed assets (buildings and MEI-assets) for three economic activities in the 16 federal states of Germany, Number of employees for 32 economic activities in the 16 federal states of Germany, Number of production sites for twelve economic activities in the 16 federal states of Germany, Data on price indices, Status: 2003Google Scholar
  14. Geldermann J, Merz M, Bertsch V, Hiete M, Rentz O, Seifert I, Thieken AH, Borst D, Werner U (2007) The reference installation approach for the estimation of industrial assets at risk. Eur J Ind Eng 2(1):73–93CrossRefGoogle Scholar
  15. Heneka P, Hofherr T, Ruck B, Kottmeier C (2006) Winter storm risk of residential structures—model development and application to the German state of Baden-Württemberg. Nat Hazards Earth Syst Sci 6:721–733Google Scholar
  16. ICPR (International Commission for the Protection of the River Rhine) (2001a) Übersichtskarten der Überschwemmungsgefährdung und der möglichen Vermögensschäden am Rhein, Report. ICPR, KoblenzGoogle Scholar
  17. ICPR (International Commission for the Protection of the River Rhine) (2001b) Atlas der Überschwemmungsgefährdung und möglicher Schäden bei Extremhochwasser am Rhein. ICPR, KoblenzGoogle Scholar
  18. INFAS Geodaten (2001) Das data warehouse. INFAS GEOdaten GmbH, Bonn, Dezember 2001Google Scholar
  19. Kaplan S, Garrick BJ (1981) On the quantitative definition of risk. Risk Anal 1(1):11–27CrossRefGoogle Scholar
  20. Kreibich H, Müller M, Thieken AH, Petrow T, Merz B (2007) Flood precaution of companies and their ability to cope with the flood in August 2002 in Saxony, Germany. Water Resour Res 43:W03408. doi: 10.1029/2005WR004691 CrossRefGoogle Scholar
  21. Kreibich H, Seifert I, Merz B, Thieken AH (submitted) Development of FLEMOcs—a new model for the estimation of flood losses in the commercial sector. Hydrol Sci JGoogle Scholar
  22. Mennis J (2003) Generating surface models of population using dasymetric mapping. Prof Geogr 55(1):31–42Google Scholar
  23. Meyer V (2005) Methoden der Sturmflut-Schadenspotenzialanalyse an der Deutschen Nordseeküste. PhD Thesis, University of Hannover, GermanyGoogle Scholar
  24. Mohaupt-Jahr B, Keil M (2004) The CLC 2000 project in Germany and environmental applications of land use information. In: Federal Environmental Agency (Umweltbundesamt) (ed) Workshop: CORINE Land cover 2000 in Germany and Europe and its use for environmental applications, Berlin, 20–21 Jan 2004Google Scholar
  25. MURL (Ministerium für Umwelt, Raumordnung und Landwirtschaft des Landes 891 Nordrhein-Westfalen) (2000) Potentielle Hochwasserschäden am Rhein in 892 NRW. Report, Düsseldorf, GermanyGoogle Scholar
  26. NIBS (National Institute of Building Sciences) (2004) Summary of databases in HAZUS-MH. NIBSGoogle Scholar
  27. Parker DJ, Green CH, Thompson PM (1987) Urban flood protection benefits: a project appraisal guide. Gower Technical Press, AldershotGoogle Scholar
  28. Penning-Rowsell E, Johnson C, Tunstall S, Tapsell S, Morris J, Chatterton J, Green C (2005a) The benefits of flood and coastal risk management: a handbook of assessment techniques. Middlesex University Press, LondonGoogle Scholar
  29. Penning-Rowsell E, Johnson C, Tunstall S, Tapsell S, Morris J, Chatterton J, Green C (2005b) The benefits of flood and costal risk management: a manual of assessment techniques. Middlesex University Press, LondonGoogle Scholar
  30. Radke S (2006) Verkehr in Zahlen 2006/2007, Bd. 35. Deutscher Verkehrs-Verlag, JahrgangGoogle Scholar
  31. Scawthorn C, Flores P, Blais N, Seligson H, Tate E, Chang S, Mifflin E, Thomas W, Murphy J, Jones C, Lawrence M (2006) HAZUS-MH flood loss estimation methodology. II. Damage and loss assessment. Nat Hazards Rev 7(2):72–81CrossRefGoogle Scholar
  32. Schmalwasser O, Schidlowski M (2006) Kapitalstockrechung in Deutschland. Wirtsch Stat 11:1102–1123Google Scholar
  33. Schneider PJ, Schauer BA (2006) HAZUS—Its development and its future. Nat Hazards Rev 7(2):40–44CrossRefGoogle Scholar
  34. Thieken AH, Müller M, Kleist L, Seifert I, Borst D, Werner U (2006) Regionalisation of asset values for risk analyses. NHESS 6(2):167–178Google Scholar
  35. Tyagunov S, Grünthal G, Wahlström R, Stempniewski L, Zschau J (2006) Seismic risk mapping for Germany. Nat Hazards Earth Syst Sci 6:573–586. (Special Issue: Methods for risk assessment and mapping in Germany)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Isabel Seifert
    • 1
  • Annegret H. Thieken
    • 2
  • Mirjam Merz
    • 3
  • Dietmar Borst
    • 4
  • Ute Werner
    • 4
  1. 1.Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Section HydrologyPotsdamGermany
  2. 2.alpS—Centre for Natural Hazard and Risk Management Ltd., Leopold-Franzens-University InnsbruckInnsbruckAustria
  3. 3.Institute for Industrial ProductionUniversity of Karlsruhe (TH)KarlsruheGermany
  4. 4.Institute for Finance, Banking and InsuranceUniversity of Karlsruhe (TH)KarlsruheGermany

Personalised recommendations